精英家教网 > 高中数学 > 题目详情
6.在数列{an}中,a1=1,an+1-an=n(n∈N*),则a100的值为(  )
A.5 050B.5 051C.4 950D.4 951

分析 由数列递推式结合已知求出数列的通项,则a100的值可求.

解答 解:由an+1-an=n(n∈N*),得:
an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1(n≥2),
则an=(n-1)+(n-2)+…+1+a1 
=$\frac{n(n-1)}{2}$+a1
∵a1=1,
∴an=$\frac{n(n-1)}{2}$+1.
则a100=$\frac{100×99}{2}$+1=4951.
故选:D.

点评 本题考查了数列递推式,考查了累加法求数列的通项公式,是中档题.本题也可以不求通项公式求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设正实数x,y满足x+y=1,则x2+y2+$\sqrt{xy}$的取值范围为$[1,\frac{9}{8}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于两个定义域相同的函数f(x)、g(x),若存在实数m,n,使h(x)=mf(x)+ng(x),则称函数f(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求$\frac{a}{b}$的取值范围;
(3)利用“基函数f(x)=log4(4x+1),g(x)=x-1)”生成一个函数h(x),使得h(x)满足:
①是偶函数,②有最小值1,求h(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}中,a3+a5=10,{an}的前n项和为Sn,S5=15.
(1)求数列{an}的通项公式an
(2)设${b_n}={({\frac{1}{2}})^n}•{a_n}$,求数列{bn}的前n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知△OFQ的面积为S,且$\overrightarrow{OF}$•$\overrightarrow{FQ}$=1,若$\frac{1}{2}$<S<2,则向量$\overrightarrow{OF}$与$\overrightarrow{FQ}$夹角θ的正切值的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a=2,集合M={x∈R|x≤3},则(  )
A.a⊆MB.a∈MC.{a}∈MD.{a|a=2}∈M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)的定义域为[-1,1],则f(2x+1)的定义域为(  )
A.[0,1]B.[-1,0]C.[-1,1]D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.集合{1,2,3,4}的真子集共有(  )
A.7个B.8个C.15个D.16个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)是奇函数,满足f(x+2)=-f(x),f(1)=2,则f(2015)+f(2016)=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

同步练习册答案