精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的各项均为正整数,对于n=1,2,3,…,有an+1=$\left\{\begin{array}{l}{3{a}_{n}+5,{a}_{n}为奇数}\\{\frac{{a}_{n}}{{2}^{k}},{a}_{n}偶数}\end{array}\right.$,其中k为使an+1为奇数的正整数,当a1=11时,a2016=98;若存在m∈N*,当n>m且an为奇数时,an恒为常数p,则p的值为1或5.

分析 由题设分别求出a1,a2,a3,a4,a5,a6,a7,a8,a9,仔细观察能够发现{an}从第3项开始是周期为6的周期数列,故a2016=a6=98,当n>m且an为奇数时,an恒为常数p,知an=p,an+1=3p+5,an+2=$\frac{3p+5}{{2}^{k}}$,再由数列{an}的各项均为正整数,能求出p.

解答 解:由题设知,a1=11,
a2=3×11+5=38,
a3=$\frac{38}{2}$=19,
a4=3×19+5=62,
a5=$\frac{62}{2}$=31,
a6=3×31+5=98,
a7=$\frac{98}{2}$49,
a8=3×49+5=152,
a9=$\frac{152}{{2}^{3}}$=19,
∴{an}从第3项开始是周期为6的周期数列,
a2016=a6=98,
若存在m∈N*,当n>m且an为奇数时,an恒为常数p,
则an=p,an+1=3p+5,an+2=$\frac{3p+5}{{2}^{k}}$,
∴(3-2k)p=-5,
∵数列{an}的各项均为正整数,
∴当k=2时,p=5,
当k=3时,p=1.
故答案为:98,1或5.

点评 题考查数列的递推公式的性质和应用,解题时分别求出a1,a2,a3,…,a8,a9,仔细观察能够发现{an}从第3项开始是周期为6的周期数列,借助数列的周期性进行求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow a$,$\overrightarrow b$,满足|$\overrightarrow a$|=1,|$\overrightarrow b$|=1,|k$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{3}$|$\overrightarrow a$-k$\overrightarrow b$|,k>0,
(1)用k表示$\overrightarrow a$•$\overrightarrow b$,并求$\overrightarrow a$与$\overrightarrow b$的夹角θ的最大值;
【注:若a>0,b>0,则a+b≥2$\sqrt{ab}$,当且仅当a=b时取等号】
(2)如果$\overrightarrow a$∥$\overrightarrow b$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直棱柱ABC-A1B1C1中,平面A1BC⊥平面A1ABB1,且AA1=AB=BC=2.M、N分别为A1B、B1C1中点.
(1)求三棱锥A1-MNC的体积.
(2)求证:AB⊥BC
(3)(文科做)求AC与平面A1BC所成角的大小.
(理科做)求锐二面角A-A1C-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$在同一平面内,$\overrightarrow{a}$=(2,1).
(Ⅰ)若|$\overrightarrow{c}$|=2$\sqrt{5}$,$\overrightarrow{a}$∥$\overrightarrow{c}$,求$\overrightarrow{c}$;
(Ⅱ)若($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,求$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.比较$\sqrt{7}$-$\sqrt{5}$与2$\sqrt{2}$-$\sqrt{6}$的大小为>(用“=”,“>”或“<”填空)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知三角形ABC三个顶点的坐标分别为A(1,3),B(-2,-3),C(4,0).
(1)求AB边所在直线的方程;
(2)求BC边上的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=ax+b(b>0)的图象经过点P(1,2),如图所示,则$\frac{4}{a-1}$+$\frac{1}{b}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax2+bx在x=-2与x=$\frac{1}{2}$处都取得极值.
(1)求函数f(x)的解析式及单调区间;
(2)求函数f(x)在区间[-3,2]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.余弦函数y=cos(x+$\frac{π}{4}$)在下列(  )区间为减函数.
A.[-$\frac{3}{4}$π,$\frac{π}{4}$]B.[-π,0]C.[-$\frac{π}{4}$,$\frac{3}{4}$π]D.[-$\frac{π}{2}$,$\frac{π}{2}$]

查看答案和解析>>

同步练习册答案