精英家教网 > 高中数学 > 题目详情
8.已知集合A={-2,0,2},B={x|x2-2x-3≤0},则A∩B=(  )
A.{0}B.{2}C.{0,2}D.{-2,0}

分析 化简集合B,根据交集的定义写出A∩B即可.

解答 解:集合A={-2,0,2},
B={x|x2-2x-3≤0}={x|-1≤x≤3},
则A∩B={0,2}.
故选:C.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,位于A处前方有两个观察站B,D,且△ABD为边长等于3km的正三角形,当发现目标出现于C处时,测得∠BDC=45°,∠CBD=75°,则AC=(  )
A.15-6$\sqrt{3}$kmB.15+6$\sqrt{3}$kmC.$\sqrt{15+6\sqrt{3}}$kmD.$\sqrt{15-6\sqrt{3}}$km

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某电影院共有1000个座位,票价不分等次,根据电影院的经营经验,当每张票价不超过10元时,票可全部售出;当票价高于10元时,每提高1元,将有30张票不能售出.为了获得更好的收益,需要给电影院一个合适的票价,基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放映一场电影的成本是5750元,票房收入必须高于成本.用x(元)表示每张票价,用y(元)表示该电影放映一场的纯收入(除去成本后的收入).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)票价定为多少时,电影放映一场的纯收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,如图所示,则原平面图形的面积为(  )
A.4$\sqrt{3}$B.8C.8$\sqrt{3}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某无人机运动过程中位移h(米)与时间t(秒)的函数关系式为h=15t-t2,当t=3秒时的瞬时速度是9(米/秒).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数的定义域为D,若满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为$[{\frac{a}{2},\frac{b}{2}}]$,则称f(x)为“倍缩函数”.若函数f(x)=ex+t为“倍缩函数”,则实数t的取值范围是(  )
A.$({-∞,-\frac{1+ln2}{2}}]$B.$({-∞,-\frac{1+ln2}{2}})$C.$[{\frac{1+ln2}{2},+∞})$D.$({\frac{1+ln2}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,根据上表提供的数据,求出y关于x的线性回归方程y=0.75x+0.35,那么表中m=3.9.
X3456
y2.5m44.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:k2-2k-24≤0;命题q:方程$\frac{x^2}{3-k}+\frac{y^2}{3+k}=1$表示焦点在x轴上的双曲线.
(1)若命题q为真,求实数k的取值范围;
(2)若命题“p∨q”为真,“p∧q“为假,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,点$({\sqrt{3},-\frac{{\sqrt{3}}}{2}})$在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l与椭圆C交于不同的两点M(x1,y1),N(x2,y2),若点P与点N关于x轴对称,判断直线PM是否恒过定点,若是,求出该点的坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案