精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面,正方形边长为2的中点.

1)求证:平面

2)求证:直线与平面所成角的正弦值为,求的长度;

3)若,线段上是否存在一点,使平面,若存在求的长度,若不存在则说明.

【答案】1)证明见解析;(2)证明见解析,24;(3)存在,

【解析】

1)以为原点建立空间直角坐标系,求出,平面法向量,利用,即可证出.

2)求出平面法向量,由,利用空间向量的数量积即可求解.

3)假设存在,设,由(1)平面法向量,由向量共线可得,解方程即可求解.

(1)由平面平面,所以

因为为正方形,所以

所以平面.

如图以为原点建立空间直角坐标系

设平面法向量为

平面平面

2)设平面法向量为

,令

,设直线与平面所成角为

解得4,所以长为4

3)存在,

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,其前n项和Sn满足4Snan2+2annN*.bn=(﹣1nanan+1Tn为数列{bn}的前n项和,则T2n_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的极值点.

1)求的取值范围.

2)求的极大值与极小值之和的取值范围.

3)若,则是否有最小值?若有,求出最小值;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线上的一点,为抛物线上异于点的两点,且直线的斜率与直线的斜率互为相反数.

1)求直线的斜率;

2)设直线过点并交抛物线于两点,且,直线轴交于点,试探究的夹角是否为定值,若是则求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱锥PABCD的底面边长为2,侧棱长为2,过点A作一个与侧棱PC垂直的平面α,则平面α被此正四棱锥所截的截面面积为_____,平面α将此正四棱锥分成的两部分体积的比值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点AB的坐标分别是(0),(0),动点Mxy)满足直线AMBM的斜率之积为﹣3,记M的轨迹为曲线E

1)求曲线E的方程;

2)直线ykx+m与曲线E相交于PQ两点,若曲线E上存在点R,使得四边形OPRQ为平行四边形(其中O为坐标原点),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年是我国垃圾分类逐步凸显效果关键的一年.在国家高度重视,重拳出击的前提下,高强度、高频率的宣传教育能有效缩短我国生活垃圾分类走入世界前列所需的时间,打好垃圾分类这场持久战全民战”.某市做了一项调查,在一所城市中学和一所县城中学随机各抽取15名学生,对垃圾分类知识进行问答,满分为100分,他们所得成绩如下:

城市中学学生成绩分别为:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

县城中学学生成绩分别为:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

1)根据上述两组数据在图中完成两所中学学生成绩的茎叶图,并通过茎叶图比较两所中学学生成绩的平均分及分散程度;(不要求计算出具体值,给出结论即可)

2)从城市中学成绩在80分以上的学生中抽取4名,记这4名学生的成绩在90分以上的人数为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年,新型冠状病毒来势凶猛,老百姓一时间谈毒色变,近来,有关喝白酒可以预防病毒的说法一直在民间流传,更有人拿出字的繁体字进行解读为:医治瘟疫要喝酒,为了调查喝白酒是否有助于预防病毒,我们调查了1000人的喝酒生活习惯与最终是否得病进行了统计,表格如下:

每周喝酒量(两)

人数

100

300

450

100

规定:①每周喝酒量达到4两的叫常喝酒人,反之叫不常喝酒人;

②每周喝酒量达到8两的叫有酒瘾的人.

1)求值,从每周喝酒量达到6两的人中按照分层抽样选出6人,再从这6人中选出2人,求这2人中无有酒瘾的人的概率;

2)请通过上述表格中的统计数据,填写完下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.1的前提下认为是否得病与是否常喝酒有关?并对民间流传的说法做出你的判断.

常喝酒

不常喝酒

合计

得病

不得病

250

650

合计

参考公式:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案