在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线与交于两点.
(1)写出的方程;
(2) ,求的值.
(1);(2).
解析试题分析:(1)根据椭圆的定义,可判断点的轨迹为椭圆,再根据椭圆的基本量,容易写出椭圆的方程,求曲线的方程一般可设动点坐标为,然后去探求动点坐标满足的方程,但如果根据特殊曲线的定义,先行判断出曲线的形状(如椭圆,圆,抛物线等),则可直接写出其方程;(2)一般地,涉及直线与二次曲线相交的问题,则可联立方程组,或解出交点坐标,或设而不求,利用一元二次方程根与系数的关系建立关系求出参数的值(取值范围),本题可设,根据,及满足椭圆的方程,利用一元二次方程根与系数的关系消去坐标即得.
试题解析:(1)设,由椭圆定义可知,点的轨迹是以为焦点,
长半轴为2的椭圆, 2分
它的短半轴, 4分
故曲线的方程为. 6分
(2)证明:设,其坐标满足消去并整理,得
8分
故. 10分
即,而,
于是,
解得 13分
考点:椭圆的方程,直线与椭圆的位置关系.
科目:高中数学 来源: 题型:解答题
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设与轴交于点,不同的两点在上(与也不重合),且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知点,,为动点,且直线与直线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线相交于不同的两点,.若点在轴上,且,求点的纵坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆的左右焦点为F1,F2,离心率为,以线段F1 F2为直径的圆的面积为, (1)求椭圆的方程;(2) 设直线l过椭圆的右焦点F2(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
极坐标系中椭圆C的方程为
以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,
求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com