精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上 ,且满足.
(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;
(Ⅱ)设为轨迹C上两点,且,N(1,0),求实数,使,且.
(Ⅰ);(Ⅱ)

试题分析:(Ⅰ)设点M(x,y),由得P(0,),Q().
得(3,)·()=0,即
又点Q在x轴的正半轴上,故点M的轨迹C的方程是.……6分
(Ⅱ)解法一:由题意可知N为抛物线C:y2=4x的焦点,且A、B为过焦点N的直线与抛物线C的两个交点。
当直线AB斜率不存在时,得A(1,2),B(1,-2),|AB|,不合题意;……7分
当直线AB斜率存在且不为0时,设,代入

则|AB|,解得          ………………10分
代入原方程得,由于,所以,
,得 .             …………………12分
解法二:由题设条件得
  

由(6)、(7)解得,又,故
点评:求曲线的轨迹方程是解析几何的基本问题之一。本题主要考查利用“相关点法”求曲线的轨迹方程。相关点法:用动点Q的坐标xy表示相关点P的坐标x0y0,然后代入点P的坐标(x0y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的焦点恰好是双曲线的右顶点,且渐近线方程为,则双曲线方程为                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求由抛物线与它在点和点的切线所围成的区域的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点与抛物线的焦点重合,左端点为
(1)求椭圆的方程;
(2)过椭圆的右焦点且斜率为的直线被椭圆截的弦长

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题:抛物线的准线方程为;命题:平面内两条直线的斜率相等是两条直线平行的充分不必要条件;则下列命题是真命题的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线和曲线,则上到的距离等于的点的个数为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

北京奥运会主体育场“鸟巢”的简化钢结构俯视图如图所示,内外两圈的钢骨架是离心率相同的椭圆,从外层椭圆顶点A、B向内层椭圆引切线AC、BD设内层椭圆方程为+=1(ab0),外层椭圆方程为+=1(ab0,m1),AC与BD的斜率之积为-,则椭圆的离心率为(   )
A.  B.  C.  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且  
(I)求椭圆C1的方程;  (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。

查看答案和解析>>

同步练习册答案