精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.
(Ⅰ)确定a,b的值;
(Ⅱ)若c=3,判断f(x)的单调性;
(Ⅲ)若f(x)有极值,求c的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)根据函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c,构造关于a,b的方程,可得a,b的值;
(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;
(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.
解答: 解:(Ⅰ)∵函数f(x)=ae2x-be-2x-cx(a,b,c∈R)
∴f′(x)=2ae2x+2be-2x-c,
由f′(x)为偶函数,可得2(a-b)(e2x-e-2x)=0,
即a=b,
又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c,
即f′(0)=2a+2b-c=4-c,
故a=b=1;
(Ⅱ)当c=3时,f′(x)=2e2x+2e-2x-3≥2
2e2x•2e-2x
-3
=1>0恒成立,
故f(x)在定义域R为均增函数;
(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e-2x-c,
而2e2x+2e-2x≥2
2e2x•2e-2x
=4,当且仅当x=0时取等号,
当c≤4时,f′(x)≥0恒成立,故f(x)无极值;
当c>4时,令t=e2x,方程2t+
2
t
-c=0的两根均为正,
即f′(x)=0有两个根x1,x2
当x∈(x1,x2)时,f′(x)<0,当x∈(-∞x1)∪(x2,+∞)时,f′(x)>0,
故当x=x1,或x=x2时,f(x)有极值,
综上,若f(x)有极值,c的取值范围为(4,+∞).
点评:本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=ax2+4ex-2lnx,其中a∈R,无理数e≈2.71828…是自然对数的底数,且已知f(x)存在最大值.
(1)求a的取值范围,并求出此时的极大值点;
(2)设函数g(x)=ex-e-x-(2e+1)x,若对任意λ,μ∈R,且λ+μ>0,恒有g(λ)+g(μ)>a(λ+μ)成立,设此时f(x)的极大值为M,求证5<M≤2e+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正整数m,n满足1<n≤m,F1,F2,F3,…,Fk为集合{1,2,3,…,m}的n元子集,且1≤i<j≤k.
(1)若?a,b∈Fk,满足|a-b|>1.
(i)求证:n≤
m+1
2
; 
(ii)求满足条件的集合Fk的个数;
(2)若Fi∩Fj中至多有一个元素,求证:k≤
m(m-1)
n(n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
0
1
3
1-
2
3
,求点M(-1,1)在矩阵A-1对应的变换作用下得到的点M′坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x-2x.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142<
2
<1.4143,估计ln2的近似值(精确到0.001).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|x2+y2≤2,x∈Z,y∈Z},则从A中任选一个元素(x,y)满足x+y≥1的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的各项均为正数,且满足a5a6+a4a7=8,则log2a1+log2a2+…+log2a10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,其外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,a,b∈{1,2,3,4},则直线l1与直线l2没有公共点的概率为
 

查看答案和解析>>

同步练习册答案