精英家教网 > 高中数学 > 题目详情
已知矩阵A=
0
1
3
1-
2
3
,求点M(-1,1)在矩阵A-1对应的变换作用下得到的点M′坐标.
考点:逆变换与逆矩阵
专题:矩阵和变换
分析:利用公式求出A的逆矩阵A-1,进而即可求出点M(-1,1)在矩阵A-1对应的变换作用下得到的点M′坐标.
解答: 解:设A-1=
ab
cd
,则AA-1=
0
1
3
1-
2
3
ab
cd
=
10
01

所以
1
3
c=1,
1
3
d=0,a-
2
3
c=0,b-
2
3
d=1

解得a=2,b=1,c=3,d=0,
A-1=
21
30

21
30
-1
1
=
-1
-3
,知点M′(-1,-3),
所以新坐标为M′(-1,-3).
点评:本题以点的变换为载体,考查待定系数法求矩阵,解题的关键是构建方程组.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-x2+bx(a,b∈R),f′(x)为其导函数,且x=3时f(x)有极小值-9.
(1)求f(x)的单调递减区间;
(2)若g(x)=2mf′(x)+(6m-8)x+6m+1,h(x)=mx,当m>0时,对于任意x,g(x)和h(x)的值至少有一个是正数,求实数m的取值范围;
(3)若不等式f′(x)>k(xlnx-1)-6x-4(k为正整数)对任意正实数x恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c均为正实数,且a+b+c=1,求
a+1
+
b+1
+
c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABP的三个顶点在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,
PF
=3
FM

(Ⅰ)若|PF|=3,求点M的坐标;
(Ⅱ)求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点为A,B,离心率为
3
2
,过左焦点垂直于x轴的直线被椭圆E截得的线段长为1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若点P是圆x2+y2=4上一动点,且在x轴上方,连接PA交椭圆E于点D,已知点C(1,0),设直线PB,DC的斜率分别为k1,k2,且k1=λk2,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

A,B,C三人进行乒乓球比赛,优胜者按以下规则决出:
(Ⅰ)三人中两人进行比赛,胜出者与剩下的一人进行比赛,直到出现两连胜者,则此两连胜者呗判定为优胜者,比赛结束;
(Ⅱ)在每次比赛中,无平局,必须决出胜负.
已知A胜B的概率是
2
3
,C胜A的概率是
1
2
,C胜B的概率是
1
3
,第一场比赛在A与C中进行
(1)分别求出第二场、第三场、第四场比赛后C为优胜者的概率;
(2)记第3n-1场比赛后C为优胜者的概率为pn,第3n场比赛后C为优胜者的概率为qn,第3n+1场比赛后C为优胜者的概率为rn,n∈N*试求pn,qn,rn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.
(Ⅰ)确定a,b的值;
(Ⅱ)若c=3,判断f(x)的单调性;
(Ⅲ)若f(x)有极值,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x+1)2014=a0+a1(x-1)+a2(x-1)2+…+a2014(x-1)2014,则a0+a1+a2+…a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1},集合B={-1,0,x},且A⊆B,则实数x的值为
 

查看答案和解析>>

同步练习册答案