精英家教网 > 高中数学 > 题目详情
已知a、b、c均为正实数,且a+b+c=1,求
a+1
+
b+1
+
c+1
的最大值.
考点:一般形式的柯西不等式
专题:计算题,不等式
分析:根据柯西不等式(x1y1+x2y2+x3y32≤(x12+x22+x32)(y12+y22+y32),将原式进行配凑并结合已知条件a+b+c=1加以计算,即可得到
a+1
+
b+1
+
c+1
的最大值.
解答: 解:因为a、b、c>0,
所以(
a+1
+
b+1
+
c+1
2=(
a+1
•1+
b+1
•1+
c+1
•1)2
≤((a+1)+(b+1)+(c+1))(1+1+1)=12,…3分
于是
a+1
+
b+1
+
c+1
≤2
3

当且仅当
a+1
=
b+1
=
c+1
,即a=b=c=
1
3
时,取“=”.
所以,
a+1
+
b+1
+
c+1
的最大值为2
3
…10分.
点评:本题给出三个正数满足a+b+c=1,求
a+1
+
b+1
+
c+1
的最大值.考查了利用柯西不等式求最值的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x-3>0},则集合N∩∁RA中元素的个数为(  )
A、无数个B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax2+4ex-2lnx,其中a∈R,无理数e≈2.71828…是自然对数的底数,且已知f(x)存在最大值.
(1)求a的取值范围,并求出此时的极大值点;
(2)设函数g(x)=ex-e-x-(2e+1)x,若对任意λ,μ∈R,且λ+μ>0,恒有g(λ)+g(μ)>a(λ+μ)成立,设此时f(x)的极大值为M,求证5<M≤2e+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,Sn=2an-2.
(1)求数列{an}的通项公式;
(2)设bn=log2an,cn=
1
bnbn+1
,记数列{cn}的前n项和Tn,若对n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a>0,函数f(x)=ex-ax-1(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间及最小值;
(Ⅱ)若f(x)≥0对任意的x∈R恒成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=丨x+1丨+丨x-2丨-m.
(Ⅰ)当m=5时,求f(x)>0的解集;
(Ⅱ)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正整数m,n满足1<n≤m,F1,F2,F3,…,Fk为集合{1,2,3,…,m}的n元子集,且1≤i<j≤k.
(1)若?a,b∈Fk,满足|a-b|>1.
(i)求证:n≤
m+1
2
; 
(ii)求满足条件的集合Fk的个数;
(2)若Fi∩Fj中至多有一个元素,求证:k≤
m(m-1)
n(n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
0
1
3
1-
2
3
,求点M(-1,1)在矩阵A-1对应的变换作用下得到的点M′坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,其外接球的表面积为
 

查看答案和解析>>

同步练习册答案