精英家教网 > 高中数学 > 题目详情

已知函数f(x)=agx,g(x)=lnx-lna,其中a为常数,函数y=f(x)在其图象和与坐标轴的交点处的切线为l1,函数y=g(x)在其图象与坐标轴的交点处的切线为l2,l1平行于l2
(1)求函数y=g(x)的解析式;
(2)若关于x的不等式数学公式恒成立,求实数m的取值范围.

解:(1)
y=f(x)的图象与坐标轴交于点(0,a);y=g(x)的图象与坐标轴交于点(a,0),
∴f′(0)=g′(a).

∵a>0,∴a=1
∴g(x)=lnx.
(2)①当x>1时,由 恒成立.
,则
,则
∴h(x)在[1,+∞)上递增.
∴?x>1,h(x)>h(1)=0.
∴φ′(x)>0.
∴φ(x)在[1,+∞)上递增.
∴m≤φ(1)=1.
②当0<x<1时,由 即m>φ(x)恒成立.
同①可得φ(x)在(0,1]上递减.
∴m≥φ(1)=1.
综合①②得m=1.
分析:(1)利用导数的几何意义,分别求两函数在与两坐标轴的交点处的切线斜率,令其相等解方程即可得a值
(2)不等式 恒成立,即当x>1时 恒成立;当0<x<1时得 恒成立.构造新函数 ,求其在[1,+∞)的最小值,在(0,1]上的最大值即可.
点评:本小题主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、函数恒成立问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案