【题目】我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于
的偶数可以表示为两个素数的和”( 注:如果一个大于
的整数除了
和自身外无其他正因数,则称这个整数为素数),在不超过
的素数中,随机选取
个不同的素数
、
,则
的概率是( )
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】已知动圆经过定点
,且与定直线
相切.
(1)求动圆圆心
的轨迹方程
;
(2)已知点
,过点
作直线
与
交于
,
两点,过点
作
轴的垂线分别与直线
,
交于点
,
(
为原点),求证:
为线段
中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长
(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.
![]()
(1)求图中
的值;
(2)估计该校担任班主任的教师月平均通话时长的中位数;
(3)在
,
这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,上、下顶点分别是
、
,上、下焦点分别是
、
,焦距为
,点
在椭圆上.
(1)求椭圆的方程;
(2)若
为椭圆上异于
、
的动点,过
作与
轴平行的直线
,直线
与
交于点
,直线
与直线
交于点
,判断
是否为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的中心在原点,其左焦点
与抛物线
的焦点重合,过
的直线
与椭圆交于
、
两点,与抛物线交于
、
两点.当直线
与
轴垂直时,
.
(1)求椭圆的方程;
(2)求
的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数β=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)若β是关于t的一元二次方程t2﹣2t+m=0(m∈R)的一个虚根,且|β|=2,求实数m的值;
(2)设复数β满足条件|β+3|+(﹣1)n|β﹣3|=3a+(﹣1)na(其中n∈N*、常数
),当n为奇数时,动点P(x、y)的轨迹为C1.当n为偶数时,动点P(x、y)的轨迹为C2.且两条曲线都经过点
,求轨迹C1与C2的方程;
(3)在(2)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于
,求实数x0的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com