| A. | $\frac{π}{4}$ | B. | $-\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $-\frac{π}{2}$ |
分析 由已知求出sinα,sinβ的值,代入两角差的余弦求得cos(α-β),再结合α-β的范围得答案.
解答 解:∵α、β均为锐角,且$cosα=\frac{{2\sqrt{5}}}{5},cosβ=\frac{{\sqrt{10}}}{10}$,
∴sinα=$\sqrt{1-co{s}^{2}α}=\sqrt{1-(\frac{2\sqrt{5}}{5})^{2}}=\frac{\sqrt{5}}{5}$,
sinβ=$\sqrt{1-co{s}^{2}β}=\sqrt{1-(\frac{\sqrt{10}}{10})^{2}}=\frac{3\sqrt{10}}{10}$.
∴cos(α-β)=cosαcosβ+sinαsinβ=$\frac{2\sqrt{5}}{5}×\frac{\sqrt{10}}{10}+\frac{\sqrt{5}}{5}×\frac{3\sqrt{10}}{10}=\frac{\sqrt{2}}{2}$.
∵0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,
∴-$\frac{π}{2}$<α-β<$\frac{π}{2}$.
又cosα>cosβ,∴α<β,
则-$\frac{π}{2}$<α-β<0,
∴α-β=-$\frac{π}{4}$.
故选:B.
点评 本题考查两角和与差的余弦,训练了由三角函数值求角,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男 | 女 | |
| 需要 | 40 | 30 |
| 不需要 | 160 | 270 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}-5$ | B. | $2\sqrt{3}-2$ | C. | $5\sqrt{3}+1$ | D. | $2\sqrt{3}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com