精英家教网 > 高中数学 > 题目详情
9.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f'(x)=2x+2.
(1)求y=f(x)的表达式;
(2)若直线x=-t(0<t<1)把y=f(x)的图象与两条坐标轴所围成的图形分成面积相等的两部分,求t的值.

分析 (1)设f(x)=x2+2x+n,根据△=0求出n即可;
(2)根据定积分的几何意义列方程解出t.

解答 解:(1)∵f'(x)=2x+2,∴f(x)=x2+2x+n(n为常数),
∵f(x)=0有两个相等的实根,∴4-4n=0,即n=1,
∴f(x)=x2+2x+1.
(2)f(x)与x轴的交点为(-1,0),与y轴的交点为(0,1),
∴y=f(x)的图象与两条坐标轴所围成的图形面积S=${∫}_{-1}^{0}$(x2+2x+1)dx=($\frac{{x}^{3}}{3}+{x}^{2}+x$)${|}_{-1}^{0}$=$\frac{1}{3}$,
∵直线x=-t(0<t<1)把y=f(x)的图象与两条坐标轴所围成的图形分成面积相等的两部分,
∴${∫}_{-t}^{0}$(x2+2x+1)dx=$\frac{1}{6}$,即$\frac{1}{3}$t3-t2+t=$\frac{1}{6}$,∴2(t-1)3=-1,∴t=1-$\frac{1}{\root{3}{2}}$.

点评 本题主要考查用待定系数法求函数的解析式,导数的运算,定积分的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短轴长为2,离心率为$\frac{{\sqrt{2}}}{2}$,直线l:y=kx+m(k≠0)与椭圆C交于A,B两点,且线段AB的垂直平分线通过点$({0,-\frac{1}{2}})$.
(1)求椭圆C的标准方程;
(2)当△AOB(O为坐标原点)面积取最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则($\overrightarrow{a}$+$\overrightarrow{b}$)($\overrightarrow{a}$-$\overrightarrow{b}$)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若不等式|b+2|-|b-2|≤a≤|b+2|+|2-b|对于任意b∈R都成立.
(1)求a的值;
(2)设x>y>0,求证:$2x-2y+\frac{1}{{{x^2}-2xy+{y^2}}}≥a-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足a1=3且an+1=4an+3(n∈N+),则数列{an}的通项公式为an=4n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点A(-3,-$\frac{{\sqrt{6}}}{2}$)是抛物线C:y2=2px(p>0)准线上的一点,点F是C的焦点,点P在C上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则该双曲线的离心率为(  )
A.3B.$\frac{3}{2}$C.$\sqrt{2}+1$D.$\frac{{\sqrt{2}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=cos x的定义域为[a,b],值域为[-$\frac{1}{2}$,1],则b-a的值不可能是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.πD.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.$\overrightarrow a,\overrightarrow b,\overrightarrow c$为三个非零向量,则①对空间任一向量$\overrightarrow p$,存在唯一实数组(x,y,z),使$\overrightarrow p=x\overrightarrow a+y\overrightarrow b+z\overrightarrow c$;②若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$;③若$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow c$,则$\overrightarrow a=\overrightarrow c$;④$({\overrightarrow a•\overrightarrow b})•\overrightarrow c=\overrightarrow a•({\overrightarrow b•\overrightarrow c})$,以上说法一定成立的个数(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α,β均为锐角,且$cosα=\frac{{2\sqrt{5}}}{5},cosβ=\frac{{\sqrt{10}}}{10}$,则α-β等于(  )
A.$\frac{π}{4}$B.$-\frac{π}{4}$C.$\frac{π}{2}$D.$-\frac{π}{2}$

查看答案和解析>>

同步练习册答案