精英家教网 > 高中数学 > 题目详情
18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短轴长为2,离心率为$\frac{{\sqrt{2}}}{2}$,直线l:y=kx+m(k≠0)与椭圆C交于A,B两点,且线段AB的垂直平分线通过点$({0,-\frac{1}{2}})$.
(1)求椭圆C的标准方程;
(2)当△AOB(O为坐标原点)面积取最大值时,求直线l的方程.

分析 (1)由椭圆的离心率公式及b=1,即可求得a的值,求得椭圆方程;
(2)将直线方程代入椭圆方程,根据韦达定理,中点坐标公式及直线的斜率公式,求得m和k的关系,利用点到直线的距离公式及弦长公式,二次函数的性质,即可求得△AOB面积取最大值.

解答 解:(1)由已知可得$\left\{\begin{array}{l}e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}\\ 2b=2\\{a^2}={b^2}+{c^2}\end{array}\right.$,解得a2=2,b2=1,
故椭圆C的标准方程为$\frac{x^2}{2}+{y^2}=1$;
(2)设A(x1,y1),B(x2,y2),联立方程$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$,
消去y得(1+2k2)x2+4kmx+2m2-2=0.
当△=8(2k2-m2+1)>0,即2k2>m2-1时,${x_1}+{x_2}=\frac{-4km}{{1+2{k^2}}}$,${x_1}•{x_2}=\frac{{2{m^2}-2}}{{1+2{k^2}}}$.
∴$\frac{{{x_1}+{x_2}}}{2}=\frac{-2km}{{1+2{k^2}}}$,$\frac{{{y_1}+{y_2}}}{2}=\frac{m}{{1+2{k^2}}}$.
由线段AB的垂直平分线过点$({0,-\frac{1}{2}})$,则$\frac{{\frac{{{y_1}+{y_2}}}{2}-({-\frac{1}{2}})}}{{\frac{{{x_1}+{x_2}}}{2}-0}}$=$-\frac{1}{k}$,
化简整理得2k2+1=2m.
由$\left\{\begin{array}{l}2{k^2}+1=2m\\ 2{k^2}+1>{m^2}\end{array}\right.$得0<m<2.
又原点O到直线AB的距离为$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$.$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|$=$2\sqrt{1+{k^2}}\frac{{\sqrt{4{k^2}-2{m^2}+2}}}{{1+2{k^2}}}$,
∴${S_{△AOB}}=\frac{1}{2}|{AB}|•d$=$\frac{{|m|\sqrt{4{k^2}-2{m^2}+2}}}{{1+2{k^2}}}$,
而2k2+1=2m且0<m<2,则${S_{△AOB}}=\frac{1}{2}\sqrt{4m-2{m^2}}$,0<m<2.
∴当m=1,即${k^2}=\frac{1}{2}$时,S△AOB取得最大值$\frac{{\sqrt{2}}}{2}$.
综上S△AOB的最大值为$\frac{{\sqrt{2}}}{2}$,
此时直线l:$y=\frac{{\sqrt{2}}}{2}x+1$或$y=-\frac{{\sqrt{2}}}{2}x+1$.

点评 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查韦达定理,弦长公式,中点坐标公式,考查二次函数的最值与椭圆的关系,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数y=ln(3x-x3)的单调递增区间是(  )
A.(0,1)B.(-1,1)C.$(-\sqrt{3},-1)$D.$(1,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD的平行四边形,∠ADC=60°,$AB=\frac{1}{2}AD$,PA⊥面ABCD,E为PD的中点.
(Ⅰ)求证:AB⊥PC
(Ⅱ)若PA=AB=$\frac{1}{2}AD=2$,求三棱锥P-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$则z=3x-y的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
非体育迷体育迷合计
301545
451055
合计7525100
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X分布列,期望E(X)和方差D(X).
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若4<x<7,则式子$\root{4}{{{{(x-4)}^4}}}+\root{4}{{{{(x-7)}^4}}}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x2-2bx+3在x∈[-1,2]时有最小值1,则实数b=-$\frac{3}{2}$或$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知在正方体ABCD-A1B1C1D1中,E,F,G分别是AB,BB1,B1C1的中点,则过这三点的截面图的形状是(  )
A.三角形B.四边形C.五边形D.六边形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f'(x)=2x+2.
(1)求y=f(x)的表达式;
(2)若直线x=-t(0<t<1)把y=f(x)的图象与两条坐标轴所围成的图形分成面积相等的两部分,求t的值.

查看答案和解析>>

同步练习册答案