精英家教网 > 高中数学 > 题目详情
8.函数y=ln(3x-x3)的单调递增区间是(  )
A.(0,1)B.(-1,1)C.$(-\sqrt{3},-1)$D.$(1,\sqrt{3})$

分析 令t=3x-x3>0,求得函数的定义域,本题即求函数t在定义域内的增区间.再利用导数研究函数的单调性,从而得出结论.

解答 解:令t=3x-x3>0,求得函数的定义域为{x|x<-$\sqrt{3}$,或 0<x<$\sqrt{3}$},且y=lnt,
即求函数t在定义域内的增区间.∵t′=3-3x2,令t′=0,求得x=±1,
由t′的符号可得t的减区间为(-∞,-1)、(1,+∞);增区间为(-1,1).
再结合函数的定义域可得函数t在定义域内的增区间为(0,1),
故选:A

点评 本题主要考查复合函数的单调性,二次函数的性质,利用导数研究函数的单调性,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,圆${C_1}:{x^2}-2x+{y^2}=0$,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C2:ρ=2sinθ.
(1)圆C2的直角坐标方程;
(2)圆C1与圆C2的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式2x2-x-3≥0的解集为{x|x≤-1或x$≥\frac{3}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.节能减排以来,兰州市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)估计用电量落在[220,300)中的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于函数f(x),若在定义域x内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.p:f(x)=m+2x为定义在[-1,1]上的“局部奇函数”;q:曲线g(x)=x2+(5m+1)x+1与x轴交于不同的两点;若“p∧q”为假命题,“p∨q”为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.考察黄烟经过培养液处理与是否跟发生青花病的关系.调查了1633株黄烟,得到如表中数据,请根据数据作统计分析:
培养液处理未处理合计
青花病30224254
无青花病2413551379
合计5415791633
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.050.010.0050.001
k3.8416.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(2-x+x2)(1+2x)6的展开式中,x2的系数为109(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.中国古代数学名著《九章算术》中记载了公元前344年 商鞅督造一种标准量器--商鞍铜方升,其三视图如图所示(单位:升),则此量器的体积为(单位:立方升)(  )
A.14B.12+$\frac{π}{2}$C.12+πD.38+2π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短轴长为2,离心率为$\frac{{\sqrt{2}}}{2}$,直线l:y=kx+m(k≠0)与椭圆C交于A,B两点,且线段AB的垂直平分线通过点$({0,-\frac{1}{2}})$.
(1)求椭圆C的标准方程;
(2)当△AOB(O为坐标原点)面积取最大值时,求直线l的方程.

查看答案和解析>>

同步练习册答案