分析 当n≥2时,作差可得an=$\frac{1}{2}$(an+1-an),从而可得an+1=3an;再讨论求第1,2项,从而求得.
解答 解:当n≥2时,Sn-1=$\frac{1}{2}$an+1,Sn=$\frac{1}{2}$an+1+1,
作差可得,
an=$\frac{1}{2}$(an+1-an),
故an+1=3an;
当n=1时,3=$\frac{1}{2}$a2+1,
解得,a2=4;
故数列{an}从第2项起成等比数列,
故an=$\left\{\begin{array}{l}{3,n=1}\\{4•{3}^{n-2},n≥2}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{3,n=1}\\{4•{3}^{n-2},n≥2}\end{array}\right.$.
点评 本题考查了数列的性质的判断及分类讨论的思想方法及作差法的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的周期为π,且在区间[$\frac{π}{3}$,π]内单调递增 | |
| B. | 函数f(x)的周期为π,且在区间[$\frac{2π}{3}$,π]内单调递增 | |
| C. | 函数f(x)的周期为2π,且在区间[$\frac{2π}{3}$,π]内单调递增 | |
| D. | 函数f(x)的周期为$\frac{π}{2}$,且在区间[$\frac{π}{2}$,π]内单调递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {4} | B. | {1,5,7} | C. | {1,2,5,7,8} | D. | {1,2,4,5,7,8} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com