精英家教网 > 高中数学 > 题目详情
7.已知全集U={1,2,3,4,5,6,7,8},A={2,4,8},B={1,4,5,7},则(∁UA)∩B=(  )
A.{4}B.{1,5,7}C.{1,2,5,7,8}D.{1,2,4,5,7,8}

分析 直接利用补集和交集的运算进行求解即可得到答案.

解答 解:由全集U={1,2,3,4,5,6,7,8},A={2,4,8},
∴∁UA={1,3,5,6,7},又B={1,4,5,7},
∴(∁UA)∩B={1,3,5,6,7}∩{1,4,5,7}={1,5,7}.
故选B.

点评 本题考查了交、并、补集的混合运算,是基础的会考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设数列{an}的前n项和为Sn,若a1=3且Sn=$\frac{1}{2}$an+1+1,则{an}的通项公式为an=$\left\{\begin{array}{l}{3,n=1}\\{4•{3}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若集合A={x|x<4且x∈N},B={x|x2-2x>0},则A∩B=(  )
A.{2}B.{3}C.{2,3}D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若实数m=${∫}_{1}^{e}$$\frac{1}{x}$dx,过点(-1,0)作曲线y=x2+x+m切线,其中一条切线方程是(  )
A.2x+y+2=0B.3x-y+3=0C.x+y+1=0D.x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=lg$\frac{1+ax}{1-2x}$是区间(-b,b)上的奇函数(a,b∈R且a≠-2),则ab的取值范围是(  )
A.$({1,\sqrt{2}}]$B.$({0,\sqrt{2}}]$C.$({1,\sqrt{2}})$D.$({0,\sqrt{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sinα=$\frac{3}{5}$,且α为第二象限角,计算:
(1)$cos({α-\frac{π}{4}})$;
(2)sin2$\frac{α}{2}+\frac{sin4αcos2α}{1+cos4α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)为定义在[0,1]上的单调递减函数,若f(x+2)≤f($\frac{1}{2}{x^2}$),则x的取值范围是(  )
A.$[1-\sqrt{5},1+\sqrt{5}]$B.$[1-\sqrt{5},-1]$C.$[-2,1+\sqrt{5}]$D.$[-\sqrt{2},-1]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线y=sin3x在点M($\frac{π}{3}$,0)处的切线的斜率为 (  )
A.1B.-3C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,已知a1>1,an+1=an2-an+1(n∈N*),且$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$=2.则当a2016-4a1取得最小值时,a1的值为=$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案