精英家教网 > 高中数学 > 题目详情
12.已知sinα=$\frac{3}{5}$,且α为第二象限角,计算:
(1)$cos({α-\frac{π}{4}})$;
(2)sin2$\frac{α}{2}+\frac{sin4αcos2α}{1+cos4α}$.

分析 (1)由角的范围,利用同角三角函数基本关系式可求cosα的值,利用两角差的余弦函数公式,特殊角的三角函数值即可化简计算求值.
(2)利用倍角公式,降幂公式化简所求即可计算求值得解.

解答 解:(1)∵sinα=$\frac{3}{5}$,且α为第二象限角,
∴cos$α=\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,
∴$cos({α-\frac{π}{4}})$=cosαcos$\frac{π}{4}$+sinαsin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$×(-$\frac{4}{5}$$+\frac{3}{5}$)=$-\frac{{\sqrt{2}}}{10}$;
(2)sin2$\frac{α}{2}+\frac{sin4αcos2α}{1+cos4α}$
=$\frac{1-cosα}{2}$+$\frac{2sin2αco{s}^{2}2α}{2co{s}^{2}2α}$
=$\frac{1-cosα}{2}$+2sinαcosα
=$\frac{1+\frac{4}{5}}{2}$+2×$\frac{3}{5}×$(-$\frac{4}{5}$)
=$-\frac{3}{50}$.

点评 本题主要考查了同角三角函数基本关系式,倍角公式,降幂公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\frac{x+a}{2{x}^{2}-1}$,x∈(-∞,b)∪(b+2,+∞)是奇函数,则a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={y|y≥-1},B={x|x≥2},则下列结论正确的是(  )
A.-3∈AB.3∉BC.A∩B=BD.A∪B=B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sinαcosα=$\frac{1}{8}$,且α是第三象限角.
求$\frac{{1-{{cos}^2}α}}{{cos(\frac{3π}{2}-α)+cosα}}$+$\frac{{sin(α-\frac{7π}{2})+sin(2017π-α)}}{{{{tan}^2}α-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集U={1,2,3,4,5,6,7,8},A={2,4,8},B={1,4,5,7},则(∁UA)∩B=(  )
A.{4}B.{1,5,7}C.{1,2,5,7,8}D.{1,2,4,5,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(1-x+x210的展开式中x3的系数为(  )
A.-30B.30C.-210D.210

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的奇函数,当x>0时,f(x)=alnx+$\frac{1}{ax}$(a>0),且函数f(x)在x=1处的切线斜率为$\frac{3}{2}$,则方程f(x)=0的实数根的个数为(  )
A.0B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等腰三角形的一个底角的正弦等于$\frac{5}{13}$,则这个三角形顶角的余弦值为(  )
A.-$\frac{119}{169}$B.$\frac{119}{169}$C.$\frac{120}{169}$D.-$\frac{119}{169}$或$\frac{119}{169}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点P,Q的坐标分别为(-1,1),(2,2),若直线l:x+my+m=0与PQ的延长线相交,则实数m的取值范围是-3<m<-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案