分析 先求出PQ的斜率,再分情况讨论出直线的几种特殊情况,综合即可得到答案.
解答 解:由题知kPQ=$\frac{2-1}{2-(-1)}$=$\frac{1}{3}$,
直线x+my+m=0过点M(0,-1).
当m=0时,直线化为x=0,一定与PQ相交,所以m≠0,
当m≠0时,kl=-$\frac{1}{m}$,考虑直线l的两个极限位置.
(1)l经过Q,即直线l1,则${k}_{{l}_{1}}$=$\frac{2-(-1)}{2-0}$=$\frac{3}{2}$;
(2)l与PQ平行,即直线l2,则${k}_{{l}_{2}}$=kPQ=$\frac{1}{3}$,
∴$\frac{1}{3}$<-$\frac{1}{m}$<$\frac{3}{2}$,
∴-3<m<-$\frac{2}{3}$,
故答案为:-3<m<-$\frac{2}{3}$.
点评 本题主要是考查直线之间的位置关系.其中涉及到分类讨论思想的应用,属于基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-3) | B. | (3,+∞) | C. | (-3,1) | D. | (-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {x|0≤x<1} | C. | {x|x≥0} | D. | {x|0<x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{15}{8}$ | C. | $\frac{16}{5}$ | D. | $\frac{20}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com