精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+ax+b,g(x)=ex(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.

【答案】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,
而f′(x)=2x+a,g′(x)=ex(cx+d+c),故b=2,d=2,a=4,d+c=4,
从而a=4,b=2,c=2,d=2;
(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2ex(x+1)
设F(x)=kg(x)﹣f(x)=2kex(x+1)﹣x2﹣4x﹣2,
则F′(x)=2kex(x+2)﹣2x﹣4=2(x+2)(kex﹣1),
由题设得F(0)≥0,即k≥1,
令F′(x)=0,得x1=﹣lnk,x2=﹣2,
①若1≤k<e2 , 则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1 , +∞)时,F′(x)>0,
即F(x)在(﹣2,x1)上减,在(x1 , +∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),
而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.
②若k=e2 , 则F′(x)=2e2(x+2)(ex﹣e2),从而当x∈(﹣2,+∞)时,F′(x)>0,
即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.
③若k>e2时,F′(x)>2e2(x+2)(ex﹣e2),
而F(﹣2)=﹣2ke2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,
综上,k的取值范围是[1,e2]
【解析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f(x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;
(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】不等式x﹣(m2﹣2m+4)y+6>0表示的平面区域是以直线x﹣(m2﹣2m+4)y+6=0为界的两个平面区域中的一个,且点(1,1)在这个区域内,则实数m的取值范围是(  )
A.(﹣∞,﹣1)∪(3,+∞)
B.(﹣∞,﹣1]∪[3,+∞)
C.[﹣1,3]
D.(﹣1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,a1=1,a5=9,则a3=(
A.±5
B.5
C.±3
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,“sinB=1”是“△ABC为直角三角形”的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多项式函数f(x)=2x5﹣5x4﹣4x3+3x2﹣524,求当x=5时的函数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x||x﹣2|≤2,x∈R},B={y|y=﹣x2 , ﹣1≤x≤2},则R(A∩B)等于(
A.R
B.{x|x∈R,x≠0}
C.{0}
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题“若a,b都是奇数,则a+b是偶数”的逆否命题是(  )
A.若a,b都不是奇数,则a+b是偶数
B.若a+b是偶数,则a,b都是奇数
C.若a+b不是偶数,则a,b都不是奇数
D.若a+b不是偶数,则a,b不都是奇数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果方程x2+y2+4x+2y+4k+1=0表示圆,那么k的取值范围是(
A.(﹣∞,+∞)
B.(﹣∞,1)
C.(﹣∞,1]
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=(
A.120
B.105
C.90
D.75

查看答案和解析>>

同步练习册答案