精英家教网 > 高中数学 > 题目详情
5.在极坐标系中,点(2,$\frac{π}{3}$)到直线ρ(cosθ+$\sqrt{3}$sinθ)=6的距离为1.

分析 化为直角坐标,再利用点到直线的距离公式距离公式即可得出.

解答 解:点P(2,$\frac{π}{3}$)化为P$(1,\sqrt{3})$.
直线ρ(cosθ+$\sqrt{3}$sinθ)=6化为$x+\sqrt{3}y-6=0$.
∴点P到直线的距离d=$\frac{|1+3-6|}{\sqrt{1+(\sqrt{3})^{2}}}$=1.
故答案为:1.

点评 本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.时下休闲广场活动流行一种“套圈”的游戏,花1元钱可以买到2个竹制的圆形套圈,玩家站在指定的位置想放置在地面上的讲评抛掷,一次投掷一次,只要奖品被套圈套住,则该奖品即归玩家所有,已知玩家对一款玩具熊志在必得,玩具被套走以后商家马上更换同样的玩具供玩家游戏,假设玩家发挥稳定且每次投掷套中奖品的概率为0.2.
(1)求投掷3次才获取玩具熊的概率;
(2)已知玩家共消费2元,求玩家获取玩具熊的个数X的分布列、数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设p:1<x<2,q:2x>1,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.观察下列各式:
C${\;}_{1}^{0}$=40
C${\;}_{3}^{0}$+C${\;}_{3}^{1}$=41
C${\;}_{5}^{0}$+C${\;}_{5}^{1}$+C${\;}_{5}^{2}$=42
C${\;}_{7}^{0}$+C${\;}_{7}^{1}$+C${\;}_{7}^{2}$+C${\;}_{7}^{3}$=43

照此规律,当n∈N*时,
C${\;}_{2n-1}^{0}$+C${\;}_{2n-1}^{1}$+C${\;}_{2n-1}^{2}$+…+C${\;}_{2n-1}^{n-1}$=4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列{$\frac{1}{{a}_{n}}$}的前10项的和为$\frac{20}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线 l1和l2 是异面直线,l1在平面 α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(  )
A.l与l1,l2都不相交B.l与l1,l2都相交
C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.

(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.
(Ⅰ)证明:sinB=cosA;
(Ⅱ)若sinC-sinAcosB=$\frac{3}{4}$,且B为钝角,求A,B,C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+1|-2|x-a|,a>0.
(Ⅰ)当a=1时,求不等式f(x)>1的解集;
(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.

查看答案和解析>>

同步练习册答案