精英家教网 > 高中数学 > 题目详情
15.时下休闲广场活动流行一种“套圈”的游戏,花1元钱可以买到2个竹制的圆形套圈,玩家站在指定的位置想放置在地面上的讲评抛掷,一次投掷一次,只要奖品被套圈套住,则该奖品即归玩家所有,已知玩家对一款玩具熊志在必得,玩具被套走以后商家马上更换同样的玩具供玩家游戏,假设玩家发挥稳定且每次投掷套中奖品的概率为0.2.
(1)求投掷3次才获取玩具熊的概率;
(2)已知玩家共消费2元,求玩家获取玩具熊的个数X的分布列、数学期望和方差.

分析 (1)投掷第3次才获取玩具熊,是指第一次和第二次均没有投掷套中奖品,且第三次投掷套中奖品,由此能求出投掷第3次才获取玩具熊的概率.
(2)由已知得X=0,1,2,3,4,X~B(4,0.2),由此能求出X的分布列与数学期望与方差

解答 解:(1)投掷第3次才获取玩具熊,是指第一次和第二次均没有投掷套中奖品,且第三次投掷套中奖品.
∴投掷第3次才获取玩具熊的概率:
P=(1-0.2)(1-0.2)•0.2=0.128.
(2)由已知得X=0,1,2,3,4,
X~B(4,0.2),
P(X=0)=${C}_{4}^{0}(0.8)^{4}=0.4096$
P(X=1)=${C}_{4}^{1}•0.2•(0.8)^{3}$=0.4096,
P(X=2)=${C}_{4}^{2}0.{2}^{2}•0.{8}^{2}$═0.1536,
P(X=3)=C${C}_{4}^{3}0.{2}^{3}•0.8$=0.0256,
P(X=4)=${C}_{4}^{4}0.{2}^{4}$=0.0016,
∴X的分布列为:

X01234
P0.40960.40960.15360.02560.0016
EX=4×0.2=0.8,
DX=4×0.2×(1-0.2)=0.64.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望、方差的求法,是中档题,在历年高考中都是必考题型之一

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.正项数列{an},a1=1,且an•an+12=36,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|1-2x|-|2+2x|.
(Ⅰ) 解不等式f(x)≥1;
(Ⅱ) 若a2+2a>f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:
(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率
(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线y=$\frac{1}{3}x+\frac{2}{3}$与幂函数f(x)=xm(m≠0)的图象将于A、B两点,且|AB|=$\sqrt{10}$,则m的值为(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知M是△ABC内一点,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,若△MBC,△MCA,△MAB的面积分别为$\frac{1}{2}$,x,y则xy的最大值是(  )
A.$\frac{1}{14}$B.$\frac{1}{16}$C.$\frac{1}{18}$D.$\frac{1}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在(-3,3)上的函数f(x)满足f(x-1)=-f(1-x),且x≥0时,f(x)=x3,则f(x)+27f(1-x)>0的解集为(  )
A.B.(-3,$\frac{1}{2}$)C.(-2,$\frac{3}{2}$)D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在极坐标系中,点(2,$\frac{π}{3}$)到直线ρ(cosθ+$\sqrt{3}$sinθ)=6的距离为1.

查看答案和解析>>

同步练习册答案