精英家教网 > 高中数学 > 题目详情
10.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:
(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率
(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围

分析 (Ⅰ)分别求出课外阅读时间落在[0,2),[2,4)的人数,并用列举法求出所有的基本事件,根据概率公式计算即可;
(Ⅱ)分别求出课外阅读时间落在[0,2),[2,4),[4,6),[6,8)的频率,根据t0的要求,求得故t0∈[6,8),继而得到答案.

解答 解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人,
一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,
记一周课外阅读时间在[0,2)的学生为A,B,一周课外阅读时间在[2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,
记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M,
其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,
所以P(M)=$\frac{6}{10}$=$\frac{3}{5}$,
即恰有1人一周课外阅读时间在[2,4)的概率为$\frac{3}{5}$.
(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,
由(Ⅰ)知课外阅读时间落在[0,2)的频率为P1=0.02,
课外阅读时间落在[2,4)的频率为P2=0.03,
课外阅读时间落在[4,6)的频率为P3=0.05,
课外阅读时间落在[6,8)的频率为P1=0.2,
因为P1+P2+P3<0.2,且P1+P2+P3+P4>0.2,
故t0∈[6,8),
所以P1+P2+P3+0.1×(t0-6)=0.2,
解得t0=7,
所以教育局拟向全市中学生的一周课外阅读时间为7小时.

点评 本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知a>0,函数f(x)=aexcosx(x∈[0,+∞]),记xn为f(x)的从小到大的第n(n∈N*)个极值点.
(Ⅰ)证明:数列{f(xn)}是等比数列;
(Ⅱ)若对一切n∈N*,xn≤|f(xn)|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过点A(1,$\frac{3}{2}$),且离心率e=$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G($\frac{1}{8}$,0),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆Γ的中心在坐标原点,焦点在x轴上,离心率e=$\frac{\sqrt{3}}{3}$,点P($\frac{\sqrt{6}}{2}$,1)在椭圆Γ上.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)过Γ的右焦点F作两条垂直的弦AB,CD,设AB,CD的中点分别为M,N,证明:直线MN必过定点,并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|$\frac{x-5}{x+1}$≤0},B={x|x2-2x-m<0}.
(1)当m=3时,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.时下休闲广场活动流行一种“套圈”的游戏,花1元钱可以买到2个竹制的圆形套圈,玩家站在指定的位置想放置在地面上的讲评抛掷,一次投掷一次,只要奖品被套圈套住,则该奖品即归玩家所有,已知玩家对一款玩具熊志在必得,玩具被套走以后商家马上更换同样的玩具供玩家游戏,假设玩家发挥稳定且每次投掷套中奖品的概率为0.2.
(1)求投掷3次才获取玩具熊的概率;
(2)已知玩家共消费2元,求玩家获取玩具熊的个数X的分布列、数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C所对的边分别为a、b、c,a=4$\sqrt{3}$,b=4,cosA=-$\frac{1}{2}$.
(1)求角B的大小;
(2)若f(x)=cos2x+$\frac{c}{2}$sin2(x+B),求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:$\frac{1}{tan(450°-x)tan(810°-x)}$•$\frac{cos(360°-x)}{sin(-x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列{$\frac{1}{{a}_{n}}$}的前10项的和为$\frac{20}{11}$.

查看答案和解析>>

同步练习册答案