精英家教网 > 高中数学 > 题目详情
已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对于任意的a∈[-3,0],x1,x2∈[0,2],不等式m-am2≥|f(x1)-f(x2)|恒成立,求实数m的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(Ⅰ)求导数f'(x),令f'(x)=0,得极值点,按两极值点的大小关系分三种情况进行讨论解不等式f'(x)>0,f'(x)<0可得单调区间;
(Ⅱ)对于任意的x1,x2∈[0,2],不等式m-am2≥|f(x1)-f(x2)|恒成立,等价于m-am2≥|f(x1)-f(x2)|max,由( I)易求f(x)的最大值、最小值,从而可得|f(x1)-f(x2)|max,进而问题转化为对于任意的a∈[-3,0],m-am2≥5-3a恒成立,构造关于a的一次函数g(a)=(m2-3)a-m+5,a∈[-3,0],只需
g(-3)≤0
g(0)≤0
,解出即可;
解答: 解:( I)f'(x)=6x2-6(a+1)x+6a=6(x-1)(x-a),
①当a<1时,由f'(x)>0,得x<a或x>1,由f'(x)<0,得a<x<a,
∴f(x)的增区间为(-∞,a),(1,+∞),减区间为(a,1);
②当a=1时,f'(x)=6(x-1)2≥0,
∴f(x)的增区间为(-∞,+∞);
③当a>1时,由f'(x)>0,得x<1或x>a,由f'(x)<0,得1<x<a,
∴f(x)的增区间为(-∞,1),(a,+∞),减区间为(1,a).
(Ⅱ)对于任意的x1,x2∈[0,2],不等式m-am2≥|f(x1)-f(x2)|恒成立,等价于m-am2≥|f(x1)-f(x2)|max
由( I)可得,f(x)在[0,1]上单调递减,在[1,2]上单调递增,且f(0)=0,f(2)=4,
∴|f(x1)-f(x2)|max=f(2)-f(1)=5-3a,
则问题转化为对于任意的a∈[-3,0],m-am2≥5-3a恒成立,即对于任意的a∈[-3,0],(m2-3)a-m+5≤0恒成立.
构造g(a)=(m2-3)a-m+5,a∈[-3,0],只需
g(-3)≤0
g(0)≤0
,解得m∈[5,+∞).
∴实数m的取值范围是[5,+∞).
点评:本题考查利用导数研究函数的单调性、在闭区间上的最值求解及恒成立问题,考查转化思想,考查学生分析解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)是定义域为R的奇函数,且当x≥0时,f(x)=x(x-2);若关于x的方程f2(x)-f(x)+t=0的方程有6个不相等的实根,求实数t的取值范围(  )
A、(0,
1
4
B、(-∞,
1
4
C、(-2,
1
4
D、(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(2-
3
x
50=a0+a1x+a2x2+…+a50x50,其中a0,a1,a2…,a50是常数,计算(a0+a2+a4+…+a502-(a1+a3+a5+…a492

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
cosx,cosx),向量
b
=(sinx,cosx),记f(x)=
a
b

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若x∈[-
π
4
π
4
]
,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点M(2,-1),且在y轴上的截距b是在x轴上的截距a的2倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx-2sin2(
x
2
-
π
6
)

(Ⅰ)求f(x)的最大值;
(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且A=
π
6
,a=
7
2
-f(2A)
sinB=
3
sinC
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=6-
3
sin2x-6sin2x

(Ⅰ)求f(x)的最大值和最小正周期;
(Ⅱ)若锐角α满足f(α)=3-2
3
,求tan
5
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系内,点A(x,y)实施变换f后,对应点为A1(y,x),给出以下命题:
①圆x2+y2=r2(r≠0)上任意一点实施变换f后,对应点的轨迹仍是圆x2+y2=r2(r≠0);
②若直线y=kx+b上每一点实施变换f后,对应点的轨迹方程仍是y=kx+b,则k=-1;
③椭圆
x2
a2
+
y2
b2
=1(a>b>0)上每一点实施变换f后,对应点的轨迹仍是离心率不变的椭圆;
④曲线C:y=-x2+2x-1(x>0)上每一点实施变换f后,对应点的轨迹是曲线C1,M是曲线C上的任意一点,N是曲线C1上的任意一点,则|MN|的最小值为
3
2
4

以上正确命题的序号是
 
(写出全部正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=logn+1(n+2)(n∈N+),观察下列运算:
a1•a2=log23•log34=2;
a1a2a3a4a5a6=log23•log34…log78=
lg3
lg2
lg4
lg3
lg5
lg4
lg8
lg7
=3


定义使a1•a2•…•ak为整数的k(k∈N+)叫做和谐数.试确定当a1•a2•…•ak=2013时,和谐数k=
 

查看答案和解析>>

同步练习册答案