精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱ABC-A1B1C1中,AB=2,AA1=4,E、F分别为AA1、BC的中点.
(Ⅰ)求证:直线AF∥平面BEC1
(Ⅱ)求点C到平面BEC1的距离.
考点:点、线、面间的距离计算,直线与平面平行的判定
专题:空间位置关系与距离
分析:(Ⅰ)取BC1的中点为R,连接RE,RF,由已知条件得四边形AFRE为平行四边形,由此能证明AF∥平面REC1
(Ⅱ)设点C到平面BEC1的距离为h,由等体积法能求出点C到平面BEC1的距离.
解答: (Ⅰ)证明:取BC1的中点为R,连接RE,RF,
RF
.
.
1
2
CC1
AE
.
.
1
2
CC1
,∴AE
.
.
RF

∴四边形AFRE为平行四边形,
则AF∥RE,又AF?平面BEC1,RE⊆平面BEC1
则AF∥平面REC1.…(6分)
(Ⅱ)解:设点C到平面BEC1的距离为h,
∵AF⊥BC,AF⊥BB1,BC∩BB1=B,
∴AF⊥平面BB1C1C,∴ER⊥平面BB1C1C.
由等体积法得:
VC-BEC1=VE-BCC1
1
3
S△BEC1
•h=
1
3
S△BCC1
•RE,
解得h=
4
5
5

∴点C到平面BEC1的距离为
4
5
5
.…(12分)
点评:本题考查直线与平面平行的证明,考查点到平面的距离的求法,解题时要认真审题,注意等积法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+b2,a∈R,b∈R.
(Ⅰ)若a从集合{0,1,2,3,4}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0有两个不相等实根的概率;
(Ⅱ)若a从区间[0,3]中任取一个数,b从区间[0,4]中任取一个数,求方程f(x)=0没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C1的参数方程为:
x=
3
cosθ
y=2sinθ
(θ为参数),以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(Ⅰ)试写出直线l的直角坐标方程和曲线C1的普通方程;
(Ⅱ)在曲线C1上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,sinx),
b
=(
3
cosx,cosx),若f(x)=
a
b
+
3

(1)求函数f(x)的最小正周期和图象的对称轴方程;
(2)求函数f(x)在区间[-
12
π
12
)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在x轴上的椭圆C的离心率为
1
2
,且椭圆经过点(0,
3
),
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)是否存在过点P(2,1)的直线l与椭圆C交于不同的两点A,B满足
PA
PB
=
5
4
,若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直平行六面体ADD1A1-BCC1B1中,BC=1,CC1=2,AB=
2
,∠BCC1=
π
3

(Ⅰ)求证:BC1⊥平面ABC;
(Ⅱ)当E为CC1的中点时,求二面角A-B1E-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对任意平面向量
AB
=(x,y),把
AB
绕其起点沿逆时针方向旋转θ角得到向量:
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ角得到点P.
(1)已知平面内点A(1,2),点B(-1,2-2
3
),把点B绕点A逆时针方向旋转
π
3
后得到点P的坐标是
 

(2)设平面内曲线C:y=-
1
2x
上的每一点绕坐标原点沿逆时针方向旋转
π
4
后得到的点的轨迹方程是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如所示,设其定义域为A,值域为C;则对于下列表述:
①A=[-5,6);
②A=[-5,0]∪[2,6);
③C=[0,+∞);
④C=[2,5];
⑤方程f(x)=1的解只有一个;
⑥对于值域C中的每一个y,在A中都有唯一的x与之对应;
正确的有
 
(填序号)

查看答案和解析>>

同步练习册答案