精英家教网 > 高中数学 > 题目详情
16.已知命题p:“x2<1”是“x<1”的充要条件,命题q:“?x∈R,x2-3<0”的否定是“?x0∈R,x02-3>0”,则(  )
A.p真q假B.p∧q为真C.p,q均为假D.p∨q为真

分析 分别判断两个命题的真假,根据复合命题真假之间的关系进行判断即可.

解答 解:当x=-2时,满足x<1,但x2<1不成立,即必要性不成立,即“x2<1”是“x<1”的充要条件错误,
即命题p为假命题.
“?x∈R,x2-3<0”的否定是“?x0∈R,x02-3≥0”,则命题q为假命题.
则p,q均为假,
故选:C.

点评 本题主要考查复合命题的真假判断,根据条件判断命题p,q的真假是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,$\sqrt{3}$),离心率为$\frac{1}{2}$,左右焦点分别为F1(-c,0),F2(c,0).
(1)求椭圆C的方程;
(2)设⊙O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆C交于不同的两点A,B,如图,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x3=8,则f(x)=(x-1)(x+1)(x2+x+1)的值是(  )
A.7B.15C.35D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知命题p:$\left\{\begin{array}{l}{x+2≥10}\\{x-10≤0}\end{array}\right.$,命题q:-m≤x≤1+m,若¬p是¬q的必要不充分条件,则实数m的取值范围是m≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\frac{1}{1+x}$,g(x)=x2+2,则f[g(2)]=(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={-1,0,1,2,3},B={x|(x+1)(x-3)<0},则A∩B=(  )
A.{-1,3}B.{0,1}C.{0,1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某篮球选手近五场比赛的上场时间分别为:9.7,9.9,10.1,10.2,10.1(单位:分钟),则这组数据的方差为0.044.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求满足下列条件的双曲线的标准方程.
(1)求与椭圆$\frac{x^2}{9}$+$\frac{y^2}{4}$=1有公共焦点,且离心率e=$\frac{\sqrt{5}}{2}$的双曲线的方程;
(2)过P(3,$\frac{15}{4}$)和Q(-$\frac{16}{3}$,5)两点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若直线m:y=kx+1与双曲线x2-y2=1的左支交于不同的A、B两点.
(1)求实数k的取值范围;
(2)若直线l经过定点P(-1,0),且过弦AB的中点M,求直线l在y轴上的截距b的取值范围.

查看答案和解析>>

同步练习册答案