如图,在平面直角坐标系xOy中,
点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.
审题路线 (1)由两条直线解得圆心C的坐标⇒设过点A与圆C相切的切线方程⇒由点到直线的距离求斜率⇒写出切线方程;(2)设圆C的方程⇒设点M(x,y)⇒由|MA|=2|MO|得M的轨迹方程⇒由两圆有公共点,列出关于a的不等式⇒解不等式可得.
解 (1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.
设过A(0,3)的圆C的切线方程为y=kx+3,
由题意,得
=1,解得k=0或-
,
故所求切线方程为y=3或3x+4y-12=0.
(2)因为圆心在直线y=2x-4上,
所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.
设点M(x,y),因为|MA|=2|MO|,所以![]()
化简得x2+y2+2y-3=0,即x2+(y+1)2=4,
所以点M在以D(0,-1)为圆心,2为半径的圆上.
由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤|CD|≤2+1,
即1≤
≤3.整理得-8≤5a2-12a≤0.
由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤
.
所以点C的横坐标a的取值范围是
.
科目:高中数学 来源: 题型:
函数y=x2cosx的导数为( )
A. y′=2xcosx-x2sinx B.y′=2xcosx+x2sinx C. y′=x2cosx-2xsinx D.y′=xcosx-x2sinx
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的( ).
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com