分析 利用同角三角函数的基本关系求得cos($\frac{π}{4}$-x)的值,再利用诱导公式,两角差的正弦公式求得sin($\frac{π}{4}$+x)的值.
解答 解:∵$\frac{π}{4}$<x<$\frac{π}{2}$,
∴$\frac{π}{4}$-x∈(-$\frac{π}{4}$,0),
∵sin($\frac{π}{4}$-x)=-$\frac{2}{3}$,
∴cos($\frac{π}{4}$-x)=$\sqrt{{1-sin}^{2}(\frac{π}{4}-x)}$=$\frac{\sqrt{5}}{3}$,
则sin($\frac{π}{4}$+x)=sin[$\frac{π}{2}$-($\frac{π}{4}$-x)]=cos($\frac{π}{4}$-x)=$\frac{\sqrt{5}}{3}$,
故答案为:$\frac{\sqrt{5}}{3}$.
点评 本题主要考查同角三角函数的基本关系,诱导公式,两角差的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | [$\frac{1}{10}$,10] | C. | [$\frac{1}{10}$,+∞) | D. | (0,10) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {-1} | C. | {-1,2} | D. | {-1,1,2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com