精英家教网 > 高中数学 > 题目详情

(1)在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.

(2)对5副不同的手套进行不放回抽取,甲先任取一只,乙再任取一只,然后甲又任取一只,最后乙再任取一只.对于下列事件:①A:甲正好取得两只配对手套;②B:乙正好取得两只配对手套.试判断事件A与B是否独立?并证明你的结论.

 

【答案】

(1),或. (2), A与B是不独立的.

【解析】

试题分析:,圆ρ=2cosθ的普通方程为:,即

直线3ρcosθ+4ρsinθ+a=0的普通方程为:,  4分

又圆与直线相切,所以

解得:,或.      7分

(2)解:①P(A)= =

== .  11分

∵P(AB)= = , =,  13分

,故A与B是不独立的.  15分

考点:本题主要考查极坐标方程与直角坐标方程的互化,直线与圆的位置关系,相互独立事件的概念及其概率计算。

点评:中档题,本题综合性较强,覆盖面较广。考查知识点注重了基础。其中(1)化为直角坐标方程,利用几何法研究直线与圆相切问题,是常见方法。相互独立事件的概率满足=

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1};
④在极坐标系中,圆ρ=-4cosθ的圆心的直角坐标是(-2,0).
其中正确的是
②,④
②,④

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列两题中任选一题作答,如果多做则按所做的第一题评分)
(1)在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=
2
3
2
3

(2)已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为
[-3,-1)
[-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)
(1)在极坐标系中,设圆ρ=4上的点到直线ρ(cosθ+
3
sinθ)=6
的距离为d,求d的最大值;
(2)θ取一切实数时,连接A(4sinθ,6cosθ)和B(-4cosθ,6sinθ)两点的线段的中点为M,求点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)(1)在极坐标系中,点P的极坐标为(
2
π
4
),点Q是曲线C上的动点,曲线C的极坐标方程为ρ(cosθ-sinθ)+1=0,则P、Q两点之间的距离的最小值为
2
2
2
2

(2)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=l,则圆D的半径R=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在两个小题中任选一题作答,如果多做,则按所做的第一题评阅记分).
(1)在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为
 

(2)若对于任意角θ,都有
cosθ
a
+
sinθ
b
=1
,则下列不等式中恒成立的是
 

A.a2+b2≤1B.a2+b2≥1C.
1
a2
+
1
b2
≤1
D.
1
a2
+
1
b2
≥1

查看答案和解析>>

同步练习册答案