精英家教网 > 高中数学 > 题目详情
4.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下:甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”,经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是乙.

分析 这个问题的关键是四人中有两人说真话,另外两人说了假话,这是解决本题的突破口;然后进行分析、推理即可得出结论.

解答 解:在甲、乙、丙、丁四人的供词不达意中,可以看出乙、丁两人的观点是一致的,因此乙、丁两人的供词应该是同真或同假(即都是真话或者都是假话,不会出现一真一假的情况);
假设乙、丁两人说的是真话,那么甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论;显然这两个结论是相互矛盾的;
所以乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯,乙、丙、丁中有一人是罪犯,由丁说假说,丙说真话,推出乙是罪犯.
故答案为乙.

点评 此题解答时应结合题意,进行分析,进而找出解决本题的突破口,然后进行推理,得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知命题p:函数y=x2-4mx+m在[8,+∞)上为增函数;命题q:x2-mx+2m-3=0有两个不相等的实根,若“p∧q”为假,“p∨q”为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等比数列{an}的各项均为正数,其前n项和为Sn,若a1=1,a3=4.
(1)若Sk=63,求k的值;
(2)设bn=log2an,证明数列{bn}是等差数列;
(3)设cn=(-1)nbn,求T=|c1|+|c2|+|c3|+…+|cn|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-$\frac{1}{2}$x2,设l为曲线y=f(x)在点P(x0,f(x0))处的切线,其中x0∈[-1,1].
(1)求直线l的方程(用x0表示)
(2)求直线l在y轴上的截距的取值范围;
(3)设直线y=a分别与曲线y=f(x)(x∈[0,+∞))和射线y=x-1(x∈[0,+∞))交于M,N两点,求|MN|的最小值及此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=|x|-$\frac{a}{x}$(a∈R)的图象不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=|x+1|-|x-1|+a(a∈R).
(Ⅰ)当a=1时,求不等式f(x)>0的解集;
(Ⅱ)若方程f(x)=x只有一个实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x(1+|x|),设关于x的不等式f(x2+1)>f(ax)的解集为A,若$[-\frac{1}{2},\frac{1}{2}]⊆A$,则实数a的取值范围为(  )
A.(-2,2)B.$(-\frac{5}{2},\frac{5}{2})$C.$(-\frac{5}{2},-1)∪(1,\frac{5}{2})$D.$(-∞,-\frac{5}{2})∪(\frac{5}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在复平面内,复数$\frac{1-i}{i}$对应的点的坐标为(-1,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等差数列{an}的前n项和为Sn,且a3+a5=a4+7,S10=100.
(1)求{an}的通项公式;
(2)求满足不等式Sn<3an-2的n的值.

查看答案和解析>>

同步练习册答案