精英家教网 > 高中数学 > 题目详情
19.已知函数y=xf′(x)(f′(x)是函数f(x)的导函数)的图象如图所示,则y=f(x)的大致图象可能是(  )
A.B.C.D.

分析 根据题意,设函数y=xf′(x)与x轴负半轴交于点M(m,0),且-2<m<-1;与x轴正半轴交于点N(1,0),结合函数y=xf′(x)的图象分段讨论y=f′(x)的符号,进而分析函数y=f(x)的单调性,分析选项即可得答案.

解答 解:根据题意,设函数y=xf′(x)与x轴负半轴交于点M(m,0),且-2<m<-1;与x轴正半轴交于点N(1,0),
当x<m时,x<0而y=xf′(x)<0,则有y=f′(x)>0,函数y=f(x)在(-∞,m)上为增函数;
当m<x<0时,x<0而y=xf′(x)>0,则有y=f′(x)<0,函数y=f(x)在(m,0)上为减函数;
当0<x<1时,x>0而y=xf′(x)<0,则有y=f′(x)<0,函数y=f(x)在(0,1)上为减函数;
当x>1时,x>0而y=xf′(x)>0,则有y=f′(x)>0,函数y=f(x)在(1,+∞)上为增函数;
分析选项可得:C符合;
故选:C.

点评 本题考查函数的导数与函数单调性的关系,涉及函数的图象以及单调性,关键是分析出导数的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(m-1)x2+x+1,(m∈R).
(1)函数h(x)=f(tanx)-2在[0,$\frac{π}{2}$)上有两个不同的零点,求m的取值范围;
(2)当1<m<$\frac{3}{2}$时,f(cosx)的最大值为$\frac{9}{4}$,求f(x)的最小值;
(3)函数g(x)=f(cosx)+f(sinx),对于任意x∈[-$\frac{π}{2}$,0],存在t∈[1,4],使得g(x)≥f(t),试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校将举行秋季体育文化节,为了解该校高二学生的身体状况,抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为13,若全校男、女生比例为4:3,则全校抽取学生数为(  )
A.91B.80C.45D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρ=2sinθ+2cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=3+t}\\{y=4+2t}\end{array}\right.$(t为参数,t∈R).
(1)求曲线C和直线l的普通方程;
(2)设直线l和曲线C交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>b,则下列不等式恒成立的是(  )
A.a2>b2B.$\frac{1}{a}$<$\frac{1}{b}$C.a2>abD.a2+b2>2ab

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如图(单位:km/h),若从中任取3辆,则恰好有1辆汽车超速的概率为(  )
A.$\frac{4}{15}$B.$\frac{3}{5}$C.$\frac{8}{15}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-1|-|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)+x=0有三个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正方体ABCD-A1B1C1D1中,M,N分别是棱A1D,DD1的中点,则异面直线CM与AN所成角的大小是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以平面直角坐标系的坐标原点为极点,x轴的正半轴为极轴建立极坐标系,在极坐标系中曲线C的极坐标方程为 ρ2=$\frac{4(1{+tan}^{2}θ)}{1-ta{n}^{2}θ}$.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)过极点的射线l1:θ=α(ρ>0,-$\frac{π}{4}$<α<0)与曲线C交于点A,射线l1绕极点逆时针旋转$\frac{π}{4}$得到射线l2,射线l2与曲线C交于点B,求|OA|•|OB|的最小值,以及此时点A的一个极坐标.

查看答案和解析>>

同步练习册答案