精英家教网 > 高中数学 > 题目详情

如图,是⊙的直径,弦的延长线相交于点垂直的延长线于点

求证:(1)
(2)四点共圆.

(1)见解析;(2)见解析.

解析试题分析:(1)根据相似三角形和比例性质证明;(2)证明四点与点等距即可.
试题解析:(1)
               5分
(2)是⊙的直径,所以四点与点等距,四点共圆   10分
考点:几何证明选讲、相似三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,若△ABC为等腰三角形,△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB·CE.

(1)求证:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P.

(1)证明:OM·OPOA2
(2)N为线段AP上一点,直线NB垂直直线ON,且交圆OB点.过B点的切线交直线ONK.证明:∠OKM=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,是的中点,的中点,的延长线交.

(Ⅰ)求的值;
(Ⅱ)若面积为,四边形的面积为,求:的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,,过点A的直线与其外接圆交于点P,交BC延长线于点D。

(1)求证:
(2)若AC=3,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC,AE=AB,BD,CE相交于点F.

(Ⅰ)求证:A,E,F,D四点共圆;
(Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆上三点,的角平分线,交圆,过作圆的切线交的 延长线于.

(Ⅰ)求证:
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

几何证明选讲如图:已知圆上的弧=,过C点的圆的切线与BA的延长线交于E点

证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE×CD.

查看答案和解析>>

同步练习册答案