精英家教网 > 高中数学 > 题目详情
17.(1)已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,求a,b;
(2)设m∈R,m2+m-2+(m2-1)i是纯虚数,其中i是虚数单位,求m.

分析 (1)利用复数代数形式的乘法运算展开等式左边,再由复数相等的条件列式求得a,b的值;
(2)直接利用实部为0且虚部不为0求得m值.

解答 解:(1)由(a+i)(1+i)=bi,得a-1+(a+1)i=bi,
由复数相等,知:a-1=0   a+1=b,
解得:a=1,b=2;
(2)∵m2+m-2+(m2-1)i是纯虚数,
∴$\left\{\begin{array}{l}{{m}^{2}+m-2=0}\\{{m}^{2}-1≠0}\end{array}\right.$,解答m=-2.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=tanx+\frac{1}{tanx}$,若f(α)=5,则f(-α)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC,三内角 A,B,C的对边分别为a,b,c,已知A=30°,$b=\sqrt{3},a=1$,则c=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则该几何体的外接球的体积为(  )
A.$\frac{4}{3}π$B.$\frac{{32\sqrt{3}}}{27}π$C.$\frac{{28\sqrt{3}}}{27}π$D.$\frac{{28\sqrt{21}}}{27}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=sinx-\sqrt{3}cosx$的图象可由函数$y=\sqrt{3}sinx+cosx$的图象至少向右平移$\frac{π}{2}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从一批含有11只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)的值为(  )
A.$\frac{42}{13}$B.$\frac{12}{13}$C.$\frac{41}{11}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即$\frac{n}{2}$);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则旅行变换后的第9项为1(注:1可以多次出现),则n的所有不同值的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设等比数列{an}的前n项和为Sn,若$\frac{{S}_{6}}{{S}_{3}}$=7,则$\frac{{S}_{9}}{{S}_{6}}$=(  )
A.2B.$\frac{7}{3}$C.$\frac{13}{4}$D.$\frac{43}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线的顶点在原点,焦点是椭圆4x2+y2=1的一个焦点,则此抛物线的焦点到准线的距离是(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\frac{1}{2}\sqrt{3}$D.$\frac{1}{4}\sqrt{3}$

查看答案和解析>>

同步练习册答案