精英家教网 > 高中数学 > 题目详情
8.在△ABC,三内角 A,B,C的对边分别为a,b,c,已知A=30°,$b=\sqrt{3},a=1$,则c=1或2.

分析 利用余弦定理列出关系式,把A=30°,$b=\sqrt{3},a=1$值代入计算即可求出c的值

解答 解:∵A=30°,$b=\sqrt{3},a=1$,
∴由余弦定理得A2=b2+c2-2bccosB,即1=3+c2-2×$\sqrt{3}$×c×$\frac{\sqrt{3}}{2}$,
即c2-3c+2=0
解得:c=1或c=2;
故答案为:1或2.

点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图所示多面体中,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°
(Ⅰ)作出题中多面体的三视图,并标出相应长度
(Ⅱ)求证:AC⊥平面BDE
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法错误的是(  )
A.命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”
B.“x>1”是“|x|>1”的充分不必要条件
C.若p且q为假命题,则p、q均为假命题
D.命题:“已知f(x)是R上的增函数,若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”的逆否命题为“已知f(x)是R上的增函数,若f(a)+f(b)<f(-a)+f(-b),则a+b<0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A={x|x2-x-6<0},B={x|2x≥1},则A∩B=(  )
A.{x|1≤x<3}B.{x|0≤x<3}C.{x|1≤x<2}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{3+4i}{{{{(1-i)}^2}}}$=(  )
A.$-2+\frac{3}{2}i$B.$-2-\frac{3}{2}i$C.$2+\frac{3}{2}i$D.$2-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=2cosx-3sinx的导数为f'(x),则f'(x)=(  )
A.f'(x)=-2sinx-3cosxB.f'(x)=-2cosx+3sinx
C.f'(x)=-2sinx+3cosxD.f'(x)=2sinx-3cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lg(-x2+3x+10)的定义域为(-2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,求a,b;
(2)设m∈R,m2+m-2+(m2-1)i是纯虚数,其中i是虚数单位,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若存在两个正实数x、y,使得等式x+m(y-2ex)(lnx-lny)=0成立,其中e为自然对数的底数,则实数m的取值范围是(-∞,-$\frac{1}{e}$]∪(0,+∞).

查看答案和解析>>

同步练习册答案