精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,AC与BD交于O点,E为PC的中点,AD=CD=1,PD=2,DB=2
2

(Ⅰ)证明PA∥平面BDE;
(Ⅱ)证明AC⊥平面PBD;
(Ⅲ)求三棱锥B-AEC的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)设AC∩BD=H,得到EH是三角形PAC的中位线,故EH∥PA,从而证明PA∥平面BDE.
(Ⅱ)由PD⊥平面ABCD可得PD⊥AC,由(Ⅰ)知,BD⊥AC,故AC⊥平面PBD.
(Ⅲ)取线段CD的中点F,则EF∥PD,利用VB-AEC=VE-ABC,即可求三棱锥B-AEC的体积.
解答: (Ⅰ)证明:连接OE,在△ADC中,因为AD=CD,且DB平分∠ADC,
所以O为AC的中点,
又由题设知E为PC的中点,故EO是三角形PAC的中位线,故EO∥PA,
又EO?平面BDE,PA?平面BDE,所以,PA∥平面BDE.
(Ⅱ)证明:因为PD⊥平面ABCD,AC?平面ABCD,所以,PD⊥AC.
由(Ⅰ)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD.
(Ⅲ)解:取线段CD的中点F,则EF∥PD,
∵PD⊥平面ABCD,
∴EF⊥平面ABCD,EF=1,
△ADC为等腰直角三角形,AD=CD=1,
∴AC=
2
,DO=
2
2
,DB=
3
2
2

∴VB-AEC=VE-ABC=
1
3
S△ABC•EF=
1
2
点评:本题考查证明线面平行、线面垂直的方法,求棱锥的体积,推出AC垂直于BD是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=2BD,M是EA的中点
(Ⅰ)判断BM与DE的位置关系,不需证明;
(Ⅱ)求证:DM∥平面ABC;
(Ⅲ)求证:平面DEA⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在定义域(-1,1)上是减函数,且f(a-1)>f(1-a2).
(1)求a的取值范围;
(2)解不等式:
loga(ax-1)
>loga1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+a|lnx-1|,其中a∈R.
(Ⅰ)当a=-2时,求函数f(x)在[1,e]上的最小值;
(Ⅱ)当a>0时,不等式f(x)≥
2e-3
2e-2
a+
2e
2e-2
在[1,+∞)上成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在空间直角坐标系A-xyz中,已知斜四棱柱ABCD-A1B1C1D1的底面是边长为3的正方形,点B,D,B1分别在x,y,z轴上,B1A=3,P是侧棱B1B上的一点,BP=2PB1
(1)写出点C1,P,D1的坐标;
(2)设直线C1E⊥平面D1PC,E在平面ABCD内,求点E的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆C:ρ=2sinθ的圆心到直线l:ρsinθ=-2的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是椭圆
x2
a2
+
y2
b2
=1(a>b>0),以M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于P,Q两点,若△PQM是等腰直角三角形,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程2x+log23=24,则其根x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)不恒等于0,且对任意x,y∈R,满足xf(y)=yf(x),则f(x)的奇偶性为
 

查看答案和解析>>

同步练习册答案