精英家教网 > 高中数学 > 题目详情
13.试写出(x-$\frac{1}{x}$)7的展开式中系数最大的项$\frac{35}{x}$.

分析 Tr+1=(-1)r${∁}_{7}^{r}$x7-2r,r必须为偶数,分别令r=0,2,4,6,经过比较即可得出.

解答 解:Tr+1=${∁}_{7}^{r}$x7-r$(-\frac{1}{x})^{r}$=(-1)r${∁}_{7}^{r}$x7-2r
r必须为偶数,分别令r=0,2,4,6,
其系数分别为:1,${∁}_{7}^{2}$,${∁}_{7}^{4}$,${∁}_{7}^{6}$.
经过比较可得:r=4时满足条件,T5=${∁}_{7}^{4}$x-1=$\frac{35}{x}$,
故答案为:$\frac{35}{x}$.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知a∈R,则a2>3a是a>3的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足$\frac{cosB}{cosC}$+$\frac{2a}{c}+\frac{b}{c}$=0,则角C的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$\overrightarrow{i}$,$\overrightarrow{j}$是平面上不共线的两个向量,已知$\overrightarrow{a}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow{b}$=-$\overrightarrow{i}$+5$\overrightarrow{j}$,则$\overrightarrow{a}$,$\overrightarrow{b}$的坐标为(  )
A.(2,3),(1,5)B.(2,-3),(1,-5)C.(-2,3),(1,-5)D.(2,-3),(-1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{a}$、$\overrightarrow{b}$是平面内两个互相垂直的单位向量,若向量$\overrightarrow{c}$满足($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow{b}$)=0,则|$\overrightarrow{c}$|的最大值是(  )
A.1B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示框图,如果输入的n为6,则输出的n2为(  )
A.16B.5C.4D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\overrightarrow{a}$=(2,-6),$\overrightarrow{b}$=(-4,3),求:
(1)|$\overrightarrow{a}$|,|$\overrightarrow{b}$|;
(2)$\overrightarrow{a}$•$\overrightarrow{b}$;
(3)$\overrightarrow{a}$•(2$\overrightarrow{a}$+$\overrightarrow{b}$);
(4)(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+3$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(1)化简3sinx+$\sqrt{3}$cosx;
(2)化简$\sqrt{2}$cosx-$\sqrt{6}$sinx;
(3)已知3cosx+4sinx=5cos(x+α),则sinα=-$\frac{4}{5}$;cosα=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的首项a1=8,公比为q(q≠1),Sn是数列{an}的前n项和.
(1)若S3,2S4,3S5成等差数列,求{an}的通项公式an
(2)令bn=log2an,Tn是数列{bn}的前n项和,若T3是数列{Tn}中的唯一最大项,求的q的取值范围.

查看答案和解析>>

同步练习册答案