【题目】已知抛物线 ,过直线:上任一点向抛物线引两条切线(切点为,且点在轴上方).
(1)求证:直线过定点,并求出该定点;
(2)抛物线上是否存在点,使得.
科目:高中数学 来源: 题型:
【题目】已知函数的最大值为,其图像相邻两条对称轴之间的距离为,且的图像关于点对称,则下列判断正确的是()
A. 函数在上单调递增
B. 函数的图像关于直线对称
C. 当时,函数的最小值为
D. 要得到函数的图像,只需要将的图像向右平移个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某养殖的水产品在临近收获时,工人随机从水中捕捞只,其质量分别在
(单位:克),经统计分布直方图如图所示.
(1)求这组数据的众数;
(2)现按分层抽样从质量为的水产品种随机抽取只,在从这只中随机抽取只,求这只水产品恰有只在内的概率;
(3)某经销商来收购水产品时,该养殖场现还有水产品共计约只要出售,经销商提出如下两种方案:
方案A:所有水产品以元/只收购;
方案B:对于质量低于克的水产品以元/只收购,不低于克的以元/只收购,
通过计算确定养殖场选择哪种方案获利更多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,右焦点为圆的圆心,且圆截轴所得弦长为4.
(1)求椭圆与圆的方程;
(2)若直线与曲线,都只有一个公共点,记直线与圆的公共点为,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如右下表所示((吨)为买进蔬菜的质量,(天)为销售天数):
(Ⅰ) 根据右表提供的数据在网格中绘制散点图,并判断与是否线性相关,若线性相关,用最小二乘法求出关于的线性回归方程
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅱ)根据(Ⅰ)中的计算结果,若该蔬菜商店准备一次性买进蔬菜25吨,则预计需要销售多少天.
参考公式:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ)写出直线l普通方程和曲线C的直角坐标方程;
(Ⅱ)过点M(-1,0)且与直线l平行的直线l1交C于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题的真假:
(1)是有理数;(2);
(3)奇数的平方仍是奇数;(4)两个集合的交集还是一个集合;
(5)每一个素数都是奇数;(6)方程有实数根;
(7);(8)如果,那么.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com