【题目】在平面直角坐标系中,直线l的参数方程为
(其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ)写出直线l普通方程和曲线C的直角坐标方程;
(Ⅱ)过点M(-1,0)且与直线l平行的直线l1交C于A,B两点,求|AB|.
科目:高中数学 来源: 题型:
【题目】已知椭圆
(a>b>0)的一个焦点与抛物线y2=4
x的焦点F重合,且椭圆短轴的两个端点与点F构成正三角形.
(1)求椭圆的方程;
(2)若过点(1,0)的直线l与椭圆交于不同的两点P,Q,试问在x轴上是否存在定点E(m,0),使
恒为定值?若存在,求出E的坐标,并求出这个定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,过直线
:
上任一点
向抛物线
引两条切线
(切点为
,且点
在
轴上方).
(1)求证:直线
过定点,并求出该定点;
(2)抛物线
上是否存在点
,使得
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=
,AC=3, BC=2,P是△ABC内的一点.
![]()
(1)若△BPC是以BC为斜边的等腰直角三角形,求PA长;
(2)若∠BPC=
,求△PBC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
有下述四个结论:①若
,则
;②
的图象关于点
对称;③函数
在
上单调递增;④
的图象向右平移
个单位长度后所得图象关于
轴对称.其中所有正确结论的编号是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量(单位:
)和年利润
(单位:千元)的影响,对近
年的宣传费
,和年销售量
的数据作了初步处理,得到下面的散点图及一些统计量的值,表中![]()
![]()
(Ⅰ)根据散点图判断,
与
,哪一个宜作为年销售量
关于年宣传费
的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立
关于
的回归方程;
(Ⅲ)已知这种产品的年利润
与
,
的关系为
,根据(Ⅱ)的结果回答下列问题:
(1)当年宣传费
时,年销售量及年利润的预报值时多少?
(2)当年宣传费
为何值时,年利润的预报值最大?
参考公式:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|ax-2|+lnx(其中a为常数)
(1)若a=0,求函数g(x)=
的极值;
(2)求函数f(x)的单调区间;
(3)令F(x)=f(x)-
,当a≥2时,判断函数F(x)在(0,1]上零点的个数,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com