精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+c(a,b,c∈R)的图象过点P(-1,2),且在点P处的切线与直线x-3y=0垂直.
(Ⅰ)若c=0,试求函数f(x)的单调区间;
(Ⅱ)若a>0,b>0,且函数f(x)在(-∞,m),(n,+∞)上单调递增,试求n-m的范围.
分析:(Ⅰ)因c=0,代入f(x)=ax3+bx2+c得f(x)=ax3+bx2,然后求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数的单调性,从而求函数f(x)的单调区间;
(Ⅱ)由题意a>0,b>0,且函数f(x)在(-∞,m),(n,+∞)上单调递增,可以令f′(x)=3ax2+2bx=0,得函数的两个极值点,从而求出n-m的表达式,最后求解.
解答:解:(Ⅰ)因为f(x)的图象过点P(-1,2),所以-a+b+c=2.
又f′(x)=3ax2+2bx,且在点P处的切线与直线x-3y=0垂直.
所以3a-2b=-3,且c=0,所以a=1,b=3.所以f(x)=3x2+6x.
令f′(x)=0?x1=0,x2=-2.显然当x<-2或x>0时,f′(x)>0;
当-2<x<0时,f′(x)<0.则函数f(x)的单调增区间是(-∞,-2),(0,+∞),
函数f(x)的单调减区间是(-2,0).(6分)
(Ⅱ)令f′(x)=3ax2+2bx=0,得x1=0,x2=-
2b
3a

因为a>0,b>0,所以当x>0或x<-
2b
3a
时,f′(x)>0,
即函数f(x)的单调增区间是(-∞,-
2b
3a
),(0,+∞)

所以n-m≥0-(-
2b
3a
)=
2b
3a
.

又由(Ⅰ)知:3a-2b=-3,
所以n-m≥
2b
3a
=
3a+3
3a
=1+
1
a
>1.

所以n-m>1.(14分)
点评:此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案