精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$,且f(a)=-3,则f(6-a)=$-\frac{3}{2}$.

分析 利用分段函数求出a的值,然后求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$,且f(a)=-3,
可知a>1,-log2(a+1)=-3,解得a=7,
f(6-a)=f(-1)=2-1-2=-$\frac{3}{2}$.
故答案为:$-\frac{3}{2}$.

点评 本题考查分段函数的应用,函数的零点以及方程根的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.圆x2+y2-x+2y=0的圆心坐标为$(\frac{1}{2},-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC=$\frac{π}{3}$.
(Ⅰ) 证明:AP⊥BC;
(Ⅱ)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:?x∈[1,2],x2-a≥0,命题q:?x0∈R,使得x02+(a-1)x0-1<0,若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.θ为锐角,sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,则tanθ+$\frac{1}{tanθ}$=(  )
A.$\frac{25}{12}$B.$\frac{7}{24}$C.$\frac{24}{7}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x-1)ex-$\frac{1}{2}$ax2(a∈R).
(Ⅰ)当a≤1时,求f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,y=f′(x)的图象恒在y=ax3+x-(a-1)x的图象上方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设命题p:实数x满足:x2-4ax+3a2<0,其中a>0,命题q:实数x满足x=($\frac{1}{2}$)m-1,其中m∈(1,2).
(1)若a=$\frac{1}{4}$,且p∧q为真,求实数x的取值范围;
(2)¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设a=0.32,b=20.5,c=log24,则实数a,b,c的大小关系是a<b<c.(按从小到大的顺序用不等号连接)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若点(sin$\frac{2π}{3}$,cos$\frac{2π}{3}}$)在角α的终边上,则sinα的值为(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案