精英家教网 > 高中数学 > 题目详情
16.已知曲线C1的极坐标方程为ρ=2cosθ,曲线C2的参数方程为$\left\{{\begin{array}{l}{x=-\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}}\right.(t$为参数).
(1)判断C1与C2的位置关系;
(2)设M为C1上的动点,N为C2上的动点,求|MN|的最小值.

分析 (1)由${C_1}:{ρ^2}=2ρcosθ$,利用互化公式可得直角坐标方程.由曲线C2的参数方程为$\left\{{\begin{array}{l}{x=-\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}}\right.(t$为参数),消去参数化为直角坐标方程.利用点到直线的距离公式可得:圆心C1(1,0)到3x+4y+8=0的距离d,即可判断出位置关系.
(2)利用d-r即可得出.

解答 解:(1)由${C_1}:{ρ^2}=2ρcosθ$,可得直角坐标方程:x2+y2-2x=0,配方为(x-1)2+y2=1.
由曲线C2的参数方程为$\left\{{\begin{array}{l}{x=-\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}}\right.(t$为参数),消去参数化为:3x=-4y-8,
∴C2的普通方程为3x+4y+8=0.
圆心C1(1,0)到3x+4y+8=0的距离$d=\frac{{|{3+8}|}}{5}=\frac{11}{5}>1$,
∴C1与C2相离.
(2)${|{MN}|_{min}}=\frac{11}{5}-1=\frac{6}{5}$.

点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程及其应用、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(1)求m、n的值及函数y=f(x)的单调区间;
(2)若函数h(x)=f(x)-ax在(-1,1)上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-2|-|x+1|,g(x)=-x.
(1)解不等式f(x)>g(x);
(2)对任意的实数x,不等式f(x)-2x≤2g(x)+m(m∈R)恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(-ax2-2x+a)•ex(a∈R).
(1)当a=-2时,求函数f(x)的极值;
(2)若f(x)在[-1,1]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,设四棱柱ABCD-A1B1C1D1的底面为菱形,A1C与底面垂直.过点C作平面与四棱柱的侧棱垂直且分别交AA1于点E,交BB1于点F,交DD1于点G.
(1)求证:四边形EFCG为菱形;
(2)设此四棱柱的底面为正方形,且AB=a,A1C=h,二面角A-BB1-C的大小等于60°,求$\frac{h}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以坐标原点为极点x轴的正半轴为极轴建立极坐标系,已知曲线${C_1}:{(x-2)^2}+{y^2}=4$,点A的极坐标为$(3\sqrt{2},\frac{π}{4})$,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=a$,且点A在直线l上.
(1)求曲线C1的极坐标方程和直线l的直角坐标方程;
(2)设l向左平移6个单位后得到l′,l′与C1的交点为M,N,求l′的极坐标方程及|MN|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知的定义域为(0,π),且对定义域的任意x恒有f′(x)sinx>f(x)cosx成立,则下列关系成立的是(  )
A.f($\frac{2016π}{2017}$)>f($\frac{π}{2017}$)
B.f($\frac{2016π}{2017}$)=f($\frac{π}{2017}$)
C.f($\frac{2016π}{2017}$)<f($\frac{π}{2017}$)
D.f($\frac{2016π}{2017}$)与f($\frac{π}{2017}$)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx+$\frac{1}{2}$.
(1)求f(x)的对称中心和对称轴方程;
(2)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合P={a|2kπ≤a≤2kπ+π,k∈Z},Q={a|-4≤a≤4},则P∩Q=[-4,-π]∪[0,π].

查看答案和解析>>

同步练习册答案