精英家教网 > 高中数学 > 题目详情
已知过点M(1,0)的直线交椭圆C:x2+3y2=6于A,B两点.
(1)求弦AB中点的轨迹方程;
(2)若F为椭圆C的左焦点,求△ABF面积的最大值.
(1)设A(x1,y1),B(x2,y2),弦AB中点(x,y),则
∵过点M(1,0)的直线交椭圆C:x2+3y2=6于A,B两点,
∴x12+3y12=6,x22+3y22=6,
两式相减可得2x(x1-x2)+6y(y1-y2)=0,
y1-y2
x1-x2
=-
x
3y

∵弦AB的斜率为
y
x-1

y
x-1
=-
x
3y

化简可得弦AB中点轨迹方程为x2+3y2-x=0.
(2)设直线AB方程为x=my+1,代入x2+3y2=6中,化简得(m2+3)y2+2my-5=0,于是y1+y2=
-2m
m2+3
y1y2=
-5
m2+3

S△ABF=S△AMF+S△BMF=
1
2
|AF||y1-y2|
,F(-2,0)
S2=
9
4
(y1-y2)2=
27(2m2+5)
(m2+3)2
=-27[
1
(m2+3)2
-
2
m2+3
]

t=
1
m2+3
,则0<t≤
1
3
S2=-27(t2-2t)=-27(t-1)2+27

t=
1
3
时,S有最大值,最大值为
15
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆的方程x2+y2=25,点A为该圆上的动点,AB与x轴垂直,B为垂足,点P分有向线段BA的比λ=
3
2

(1)求点P的轨迹方程并化为标准方程形式;
(2)写出轨迹的焦点坐标和准线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条线段的长等于10,两端点A、B分别在x轴和y轴上滑动,M在线段AB上且
AM
=4
MB
,则点M的轨迹方程是(  )
A.x2+16y2=64B.16x2+y2=64C.x2+16y2=8D.16x2+y2=8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动点P(x1,y1)在曲线y=2x2+1上移动,则点P与点(0,-l)连线中点的轨迹方程为(  )
A.y=2x2B.y=4x2C.y=6x2D.y=8x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若△ABC的个顶点坐标A(-4,0)、B(4,0),△ABC的周长为18,则顶点C的轨迹方程为(  )
A.
x2
25
+
y2
9
=1
B.
y2
25
+
x2
9
=1
(y≠0)
C.
x2
16
+
y2
9
=1
(y≠0)
D.
x2
25
+
y2
9
=1
(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知与曲线C:x2+y2-2x-2y+1=0相切的直线l交x轴、y轴于A、B两点,O为原点,且|OA|=a,|OB|=b,(a>2,b>2).
(1)求证:曲线C与直线l相切的条件是(a-2)(b-2)=2;
(2)求线段AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)判断直线l与圆C的位置关系;
(2)设l与圆C交与不同两点A、B,求弦AB的中点M的轨迹方程;
(3)若定点P(1,1)分弦AB为
AP
PB
=
1
2
,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面直角坐标系中,已知A(-2,0),B(2,0),C(1,0),P是x轴上任意一点,平面上点M满足:
PM
PB
CM
CB
对任意P恒成立,则点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从椭圆短轴的一个端点看长轴的两个端点的视角为,那么此椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案