精英家教网 > 高中数学 > 题目详情
10.已知{an}是各项均为正数的等比数列,a3+1是a2与a4的等差中项且an+2=an+1+2an
(Ⅰ)求{an}的通项公式;
(Ⅱ)设${b_n}=\frac{{{{({a_n}+1)}^2}}}{a_n}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)设{an}是各项均为正数,公比为q的等比数列,运用等差数列的中项的性质和等比数列的通项公式,解方程可得首项和公比,进而得到所求通项公式;
(II)求得${b_n}=\frac{{a_n^2+2{a_n}+1}}{a_n}={a_n}+\frac{1}{a_n}+2={2^{n-1}}+\frac{1}{{{2^{n-1}}}}+2$,再由数列的求和方法:分组求和,运用等比数列的求和公式,即可得到所求和.

解答 解:(Ⅰ)设{an}是各项均为正数,公比为q的等比数列,
令n=1,得a3=a2+2a1
所以有q2-q-2=0,解得q=2,
又a3+1是a2与a4的等差中项,
可得2(a3+1)=a2+a4
得2(4a1+1)=2a1+8a1,解得a1=1,
所以${a_n}={2^{n-1}}$;                                      
(II)${b_n}=\frac{{a_n^2+2{a_n}+1}}{a_n}={a_n}+\frac{1}{a_n}+2={2^{n-1}}+\frac{1}{{{2^{n-1}}}}+2$,
所以${T_n}=(1+2+{2^2}+…+{2^{n-1}})+(1+\frac{1}{2}+…+\frac{1}{{{2^{n-1}}}})+2n$
=$\frac{1-{2}^{n}}{1-2}$+$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$+2n           
=${2^n}-\frac{1}{{{2^{n-1}}}}+2n{+}1$.

点评 本题考查等比数列的通项公式的求法,注意运用等差数列的性质,同时考查数列的求和方法:分组求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知sin($\frac{π}{4}$+α)sin($\frac{π}{4}$-α)=$\frac{1}{6}$,α∈($\frac{π}{2}$,π),求sin4α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知连续不断函数f(x)=sinx+x-$\frac{π}{4}$(0<x<$\frac{π}{2}$),g(x)=cosx-x+$\frac{π}{4}$(0<x<$\frac{π}{2}$).
(1)求证:函数f(x)在区间(0,$\frac{π}{2}$)上有且只有一个零点;
(2)现已知函数g(x)在(0,$\frac{π}{2}$)上有且只有一个零点(不必证明),记f(x)和g(x)在(0,$\frac{π}{2}$)上的零点分别为x1,x2,求证:x1+x2=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在边长为3的正方形ABCD内随机取点P,则点P到正方形各顶点的距离都大于1的概率为1-$\frac{π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=m(0<m<A)的三个相邻交点的横坐标分别为3,5,11,则f(x)的单调递减区间是(  )
A.[8k,8k+4],k∈ZB.[8kπ,8kπ+4],k∈ZC.[8k-4,8k],k∈ZD.[8kπ-4,8kπ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=3cos(2x+φ)的图象关于点$({\frac{2π}{3},0})$中心对称,则|φ|的最小值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$({x^2}+a){(x-\frac{1}{x})^6}(a∈R)$的展开式中常数项为5,则该展开式中x2项的系数为-$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的三边分别为a,b,c,B=$\frac{π}{3}$,且b=3$\sqrt{3}$,a=2
(1)求sin2A;
(2)求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=3sin($\frac{1}{2}$x+$\frac{π}{3}$),则f(x)的周期是4π;f(π)=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案