精英家教网 > 高中数学 > 题目详情
2.若$({x^2}+a){(x-\frac{1}{x})^6}(a∈R)$的展开式中常数项为5,则该展开式中x2项的系数为-$\frac{25}{2}$.

分析 根据$({x^2}+a){(x-\frac{1}{x})^6}(a∈R)$的展开式中常数项为5,求出a的值,即可求展开式中x2的系数.

解答 解:$({x^2}+a){(x-\frac{1}{x})^6}(a∈R)$的展开式中常数项为${C}_{6}^{4}•(-1)^{4}+a•{C}_{6}^{3}•(-1)^{3}$=5,
∴a=$\frac{1}{2}$,
∴展开式中x2的系数为$\frac{1}{2}{C}_{6}^{2}•(-1)^{2}+{C}_{6}^{3}•(-1)$=-$\frac{25}{2}$,
故答案为:-$\frac{25}{2}$.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在△ABC中,若tanA=$\frac{1}{3}$,tanB=-2,则角C等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知如图,在直三棱柱ABC-A1B1C1中,AA1=AC,且AB⊥AC,M是面CC1的中点,N是BC的中点,点P在直线A1B1上.
(Ⅰ)若P为A1B1中点,求证:NP∥平面ACC1A1
(Ⅱ)证明:PN⊥AM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是各项均为正数的等比数列,a3+1是a2与a4的等差中项且an+2=an+1+2an
(Ⅰ)求{an}的通项公式;
(Ⅱ)设${b_n}=\frac{{{{({a_n}+1)}^2}}}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点P在角α的终边上,且坐标为(-1,2).
(1)求sinα和cosα的值;
(2)求$sin({2α-\frac{π}{3}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,c(cosA+cosB)=a+b,试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}满足a1=2,${a_{n+1}}=\frac{1}{{1-{a_n}}}(n∈{N^*})$,则a2016=(  )
A.-2B.-1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=1,an+1=(1+$\frac{1}{n}$)an+$\frac{n+1}{{2}^{n}}$,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示的是水平放置的三角形的直观图,D为△ABC中BC的中点,则原图形中的AB,AD,AC三条线段中(  )
A.最长的是AB,最短的是ACB.最长的是AC,最短的是AB
C.最长的是AB,最短的是ADD.最长的是AC,最短的是AD

查看答案和解析>>

同步练习册答案