精英家教网 > 高中数学 > 题目详情
2.已知△ABC的三个内角A、B、C的对边分别为a、b、c,若B为锐角,$\sqrt{3}$a-2bsinA=0,且a、b、c成等比数列.
(Ⅰ)求角B的大小;
(Ⅱ)判断△ABC的形状.

分析 (Ⅰ)利用正弦定理进行求解即可求角B的大小;
(Ⅱ)结合等差数列以及正弦定理进行判断即可.

解答 解:(Ⅰ)由$\sqrt{3}$a-2bsinA=0可得$\frac{a}{sinA}=\frac{2b}{\sqrt{3}}$,
由正弦定理$\frac{a}{sinA}=\frac{2b}{\sqrt{3}}$=$\frac{b}{sinB}$.)
解得sinB=$\frac{\sqrt{3}}{2}$.
又∵B 为锐角,
∴B=$\frac{π}{3}$.
(Ⅱ)∵a,b,c成等比数列,∴ac=b2
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-ac}{2ac}$=$\frac{1}{2}$,
化简得a2+c2-2ac=0,
解得a=c.
∴△ABC是等边三角形.

点评 本题主要考查解三角形的应用,三角形的形状的判断,利用正弦定理和余弦定理是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设f(x)是定义在R上的奇函数,f′(x)为其导函数,且f(3)=0,当x>0时,有$\frac{xf′(x)-f(x)}{{x}^{2}}$<0恒成立,则不等式xf(x)>0的解集是(-3,0)∪(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等比数列{an}前n项的积为Tn,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是T17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$y=\frac{{\sqrt{4-{x^2}}}}{|x|-2}$的定义域为(  )
A.[-2,2]B.(-2,2)C.(-∞,2)D.(-∞,-2)∪(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=x+x3,且x1+x2<0,x2+x3<0,x3+x1<0则(  )
A.f(x1)+f(x2)+f(x3)>0B.f(x1)+f(x2)+f(x3)<0
C.f(x1)+f(x2)+f(x3)=0D.f(x1)+f(x2)+f(x3)符号不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知${(2x+\sqrt{3})^{21}}$=ao+a1x+a2x2+a3x3+…a21x21,则(a0+a2+…a202-(a1+a3+…a212的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=sinx在区间(0,2π)上可找到n个不同数x1,x2,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$,则n的最大值等于(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面是边长为2$\sqrt{3}$的菱形,∠BAD=120°且PA⊥面ABCD,PA=2$\sqrt{6}$,M,N分别为PB,PD的中点.
(1)证明:MN∥面ABCD
(2)设Q为PC的中点,求三棱锥M-ANQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)),x∈[-4,0]的图象,图象的最高点为B(-1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧$\widehat{DE}$.
(1)求曲线段FGBC的函数表达式;
(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;
(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧$\widehat{DE}$上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.

查看答案和解析>>

同步练习册答案