精英家教网 > 高中数学 > 题目详情
3.在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD 为平行四边形,
∠CAD=90°,EF∥BC,EF=$\frac{1}{2}$BC,AC=$\sqrt{2}$,AE=EC=1.
(1)求证:CE⊥AF;
(2)若三棱锥F-ACD 的体积为$\frac{1}{3}$,求点D 到平面ACF 的距离.

分析 (1)推导出AD⊥平面AEC,从而AD⊥CE,由勾股定理得AE⊥EC,从而CE⊥平面ADEF,由此能证明CE⊥AF.
(2)设AC的中点为G,连接EG,推导出点F到面ABCD的距离等于点E到面ABCD的距离,由VF-ACD=VE-ACD,能求出点D到平面ACF的距离.

解答 证明:(1)∵平面ACE⊥平面ABCD,且平面ACE∩平面ABCD=AC,
∵AD⊥AC,∴AD⊥平面AEC…(1分)
∵CE?平面AEC,∴AD⊥CE,…(2分)
又$AC=\sqrt{2},AE=EC=1$,∴AC2=AE2+CE2,∴AE⊥EC…(3分)
∵EF∥BC,BC∥AD,∴EF∥AD即A、D、E、F共面,…(4分)
又AE∩AD=D,∴CE⊥平面ADEF,…(5分)
∵AF?面ADEF,∴CE⊥AF.…(6分)
解:(2)设AC的中点为G,连接EG,
∵AE=CE,∴EG⊥AC
∵平面ACE⊥平面ABCD,且平面ACE∩平面ABCD=AC,
∴EG⊥平面ABCD∵EF∥BC,EF?平面ABCD,
∴点F到面ABCD的距离等于点E到面ABCD的距离,即EG…(7分)
∴${V_{F-ACD}}={V_{E-ACD}}=\frac{1}{3}{S_{△ACD}}•EG=\frac{1}{3}$…(8分)
${S_{△ACD}}=\frac{1}{2}AC•AD=\frac{1}{2}•\sqrt{2}•AD$,$EG=\frac{1}{2}AC=\frac{{\sqrt{2}}}{2}$
∴${V_{F-ACD}}=\frac{1}{3}•\frac{1}{2}•\sqrt{2}•AD•\frac{{\sqrt{2}}}{2}=\frac{1}{3}$,所以AD=2…(9分)
∴BC=AD=2,$EF=\frac{1}{2}BC=1$,$FA=FC=\sqrt{A{E^2}+E{F^2}}=\sqrt{2}$,
所以${S_{△FAC}}=\frac{1}{2}\sqrt{2}•\sqrt{2}•sin{60^0}=\frac{{\sqrt{3}}}{2}$…(10分)
设点D到平面ACF的距离为d,则$\frac{1}{3}{S_{△FAC}}•d=\frac{1}{3}$,…(11分)
解得$d=\frac{{2\sqrt{3}}}{3}$,所以点D到平面ACF的距离$\frac{{2\sqrt{3}}}{3}$.…(12分)

点评 本题考查线线垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,a1=-2008,其前n项和为Sn,若$\frac{{S}_{12}}{12}$-$\frac{{S}_{10}}{10}$=2,则S2008的值等于-2008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=4x的焦点为F,过F的直线l交C于A,B两点,M为线段AB的中点,O为坐标原点.AO、BO的延长线与直线x=-4分别交于P、Q两点.
(Ⅰ)求动点M的轨迹方程;
(Ⅱ)连接OM,求△OPQ与△BOM的面积比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=3sin(ωx+\frac{π}{3})$的最小正周期为π,将函数f(x)的图象向右平移$\frac{π}{6}$个所得图象对应的函数为y=g(x),则关于函数为y=g(x)的性质,下列说法不正确的是(  )
A.g(x)为奇函数B.关于直线$x=\frac{π}{2}$对称
C.关于点(π,0)对称D.在$(-\frac{π}{6},\frac{π}{4})$上递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{a+blnx}{x-1}$(a,b∈R)在点 (2,f (2)) 处切线的斜率为-$\frac{1}{2}$-ln 2,且函数过点(4,$\frac{1+2ln2}{3}$).
(Ⅰ)求a、b 的值及函数 f (x)的单调区间;
(Ⅱ)若g(x)=$\frac{k}{x}$(k∈N*),对任意的实数x0>1,都存在实数x1,x2满足0<x1<x2<x0,使得f(x0)=f(x1)=f(x2),求k 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2,离心率为$\frac{{2\sqrt{5}}}{5}$,抛物线G:y2=2px(p>0)的焦点F与椭圆E的右焦点重合,若斜率为k的直线l过抛物线G的焦点F与椭圆E相交于A,B两点,与抛物线G相交于C,D两点.
(Ⅰ)求椭圆E及抛物线G的方程;
(Ⅱ)是否存在实数λ,使得$\frac{1}{{|{AB}|}}+\frac{λ}{{|{CD}|}}$为常数?若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等腰三角形ABC中,底边BC=3,∠BAC=120°,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,若P是BC边上的中点,则$\overrightarrow{AP}$•$\overrightarrow{AD}$的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知m∈R,命题p:对任意实数x,不等式x2-2x-1≥m2-3m恒成立,若¬p为真命题,则m的取值范围是(-∞,1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校某次N名学生的学科能力测评成绩(满分120分)的频率分布直方图如下,已知分数在100-110的学生数有21人(1)求总人数N和分数在110-115分的人数n.;
(2)现准备从分数在110-115的n名学生(女生占$\frac{1}{3}$)中选3位分配给A老师进行指导,设随机变量ξ表示选出的3位学生中女生的人数,求ξ的分布列与数学期望Eξ;
(3)为了分析某个学生的学习状态,对其下一阶段的学习提供指导建议,对他前7次考试的数学成绩x、物理成绩y进行分析,该生7次考试成绩如表
数学(x)888311792108100112
物理(y)949110896104101106
已知该生的物理成绩y与数学成绩x是线性相关的,求出y关于x的线性回归方程 $\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的斜率和截距的最小二乘估计分别为$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i-}\overline{x})^{2}}$,$\stackrel{∧}{a}=\overline{y}-\stackrel{∧}{b}\overline{x}$.

查看答案和解析>>

同步练习册答案