精英家教网 > 高中数学 > 题目详情
1.已知不等式组$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}\right.$构成平面区域Ω(其中x,y是变量),若目标函数z=ax+6y(a>0)的最小值为-6,则实数a的值为(  )
A.$\frac{3}{2}$B.6C.3D.$\frac{1}{2}$

分析 作出不等式组对应的平面区域,利用目标函数的几何意义确定最优解,解方程即可.

解答 解:作出不等式组对应的平面区域如图:
由z=ax+6y(a>0)得y=-$\frac{a}{6}$x+$\frac{z}{6}$,
则直线斜率-$\frac{a}{6}$<0,
平移直线y=-$\frac{a}{6}$x+$\frac{z}{6}$,
由图象知当直线y=-$\frac{a}{6}$x+$\frac{z}{6}$经过点A时,直线的截距最小,此时z最小,为-6,
由$\left\{\begin{array}{l}{2x-y+4=0}\\{y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$,
即A(-2,0),
此时-2a+0=-6,
解得a=3,
故选:C

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若非负实数x、y满足$\left\{\begin{array}{l}x+2y-4≥0\\ 2x+y-3≥0\end{array}\right.$,则x+y的最小值为$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=x+\frac{a}{x}+lnx,(a∈R)$,
(Ⅰ)若f(x)在点(1,f(1))处的切线与x轴平行,求实数a的值及f(x)的单调区间;
(Ⅱ)当a≥2时,存在两点(x1,f(x1)),(x2,f(x2)),使得曲线y=f(x)在这两点处的切线互相平行,求证x1+x2>8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一双曲线以椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的长轴顶点为焦点,渐近线与椭圆焦点与短轴顶点的连线平行.
(1)求双曲线的标准方程;
(2)P点在双曲线上,且PF1⊥PF2,求点P到x轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α是第三象限角,则$\frac{α}{3}$是第一、三或四象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=ln|x|B.y=cosxC.$y=\frac{1}{x}$D.y=-x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是49.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设全集U={1,2,3,4,5},集合A={1,2},B={2,3,5},(∁UA)∪B=(  )
A.{3,5}B.{3,4,5}C.{1,2,3,4}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.记集合T={0,1,2,3,4,5,6},M=$\{\frac{a_1}{7}+\frac{a_2}{7^2}+\frac{a_3}{7^3}+\frac{a_4}{7^4}|{a_i}∈T,i=1,2,3,4\}$,将M中的元素按从大到小的顺序排成数列bi,并将bi按如下规则标在平面直角坐标系的格点(横、纵坐标均为整数的点)处:点(1,0)处标b1,点(1,-1)处标b2,点(0,-1)处标b3,点(-1,-1)处标b4,点(-1,0)标b5,点(-1,1)处标b6,点(0,1)处标b7,…,以此类推,则(1)b5=$\frac{2396}{2401}$;(2)标b50处的格点坐标为(4,2).

查看答案和解析>>

同步练习册答案