| A. | $\frac{3}{2}$ | B. | 6 | C. | 3 | D. | $\frac{1}{2}$ |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义确定最优解,解方程即可.
解答
解:作出不等式组对应的平面区域如图:
由z=ax+6y(a>0)得y=-$\frac{a}{6}$x+$\frac{z}{6}$,
则直线斜率-$\frac{a}{6}$<0,
平移直线y=-$\frac{a}{6}$x+$\frac{z}{6}$,
由图象知当直线y=-$\frac{a}{6}$x+$\frac{z}{6}$经过点A时,直线的截距最小,此时z最小,为-6,
由$\left\{\begin{array}{l}{2x-y+4=0}\\{y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$,
即A(-2,0),
此时-2a+0=-6,
解得a=3,
故选:C
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=ln|x| | B. | y=cosx | C. | $y=\frac{1}{x}$ | D. | y=-x2+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {3,5} | B. | {3,4,5} | C. | {1,2,3,4} | D. | {2,3,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com