| A. | -2 | B. | -8 | C. | 4 | D. | 2 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答
解:由约束条件$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}$作出可行域如图,
联立$\left\{\begin{array}{l}{y=x}\\{x=-2}\end{array}\right.$,解得A(-2,-2),
化z=x-3y为y=$\frac{x}{3}-\frac{z}{3}$,
由图可知,当直线y=$\frac{x}{3}-\frac{z}{3}$过A时,直线在y轴上的截距最小,z有最大值为4.
故选:C.
点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com