精英家教网 > 高中数学 > 题目详情
13.已知数列{an}中,a1=4且${a_n}=3{a_{n-1}}+{3^n}-2(n≥2,n∈{N^*})$.
(Ⅰ)证明:数列$\left\{{\frac{{{a_n}-1}}{3^n}}\right\}$为等差数列;
(Ⅱ)求数列{an-1}的前n项和Sn

分析 (Ⅰ)通过对${a_n}=3{a_{n-1}}+{3^n}-2$两边同时减1、然后同时除以3n,整理可知$\frac{{{a_n}-1}}{{3{\;}^n}}-\frac{{{a_{n-1}}-1}}{{{3^{n-1}}}}=1(n≥2,n∈{N^*})$,进而可知数列$\left\{{\frac{{{a_n}-1}}{3^n}}\right\}$是首项、公差均为1的等差数列;
(Ⅱ)通过(Ⅰ)知${a_n}-1=n•{3^n}$,进而利用错位相减法计算即得结论.

解答 (Ⅰ)证明:∵${a_n}=3{a_{n-1}}+{3^n}-2$,
∴${a_n}-1=3{a_{n-1}}+{3^n}-3=3({a_{n-1}}-1)+{3^n}$,
∴$\frac{{{a_n}-1}}{{3{\;}^n}}=\frac{{3({a_{n-1}}-1)+{3^n}}}{3^n}=\frac{{{a_{n-1}}-1}}{{{3^{n-1}}}}+1$,
∴$\frac{{{a_n}-1}}{{3{\;}^n}}-\frac{{{a_{n-1}}-1}}{{{3^{n-1}}}}=1(n≥2,n∈{N^*})$,
又∵$\frac{{a}_{1}-1}{{3}^{1}}$=$\frac{4-1}{3}$=1,
∴数列$\left\{{\frac{{{a_n}-1}}{3^n}}\right\}$是首项、公差均为1的等差数列;
(Ⅱ)解:由(Ⅰ)知:$\frac{{{a_n}-1}}{3^n}=1+(n-1)×1=n$,
∴${a_n}-1=n•{3^n}$,
∴${S_n}=1×{3^1}+2×{3^2}+…+n•{3^n}$,
$3{S_n}=\;\;1×{3^2}+2×{3^3}+…+n•{3^{n+1}}$,
两式相减得:$2{S_n}=n•{3^{n+1}}-({3^1}+{3^2}+…+{3^n})$
=$n•{3^{n+1}}-\frac{{{3^n}×3-3}}{3-1}=n•{3^{n+1}}-\frac{{{3^{n+1}}}}{2}+\frac{3}{2}$,
∴${S_n}=\frac{{n•{3^{n+1}}}}{2}-\frac{{{3^{n+1}}}}{4}+\frac{3}{4}$.

点评 本题考查数列的通项及前n项和,考查错位相减法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的c的值为(  )
A.6B.8C.13D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前N项和为Sn,且Sn=2-2an
(1)求证:{an}为等比数列;
(2)求数列{an}的通项公式;
(3)求数列{anSn}的前n项之和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}为等差数列,a3=3,S6=21,数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,若对一切n∈N*,恒有S2n-Sn>$\frac{m}{16}$成立,则m的取值范围是m<8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知an=logn+1(n+2)(n∈N*),观察下列算式:a1•a2=log23•log34=$\frac{lg3}{lg2}$$•\frac{lg4}{lg3}$=2;a1•a2•a3•a4•a5•a6=log23•log34•…•log78=$\frac{lg3}{lg2}$$•\frac{lg4}{lg3}$•…•$\frac{lg8}{lg7}$=3,…;若a1•a2•a3•…•am=2016(m∈N*),则m的值为(  )
A.22016+2B.22016C.22016-2D.22016-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,S3=15,a3和a5的等差中项为9
(1)求an及Sn
(2)令bn=$\frac{4}{{{a}_{n}}^{2}-1}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x3+ax+b=0,其中a,b均为实数.下列条件中,使得该三次方程仅有一个实根的是①③④.(写出所有正确条件的编号)
①a=b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若点P(x,y)在不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥1}\end{array}\right.$所表示的平面区域内,则原点O与点P距离的取值范围是[1,2].

查看答案和解析>>

同步练习册答案