分析 (1)由数列递推式求得首项,取n=n-1得到另一递推式,作差后可得{an}为公比是$\frac{2}{3}$的等比数列;
(2)直接由等比数列的通项公式得答案;
(3)把(2)中求得的通项公式代入{anSn},分组后利用等比数列的前n项和公式求解.
解答 证明:(1)由Sn=2-2an,得${a}_{1}=\frac{2}{3}$,
当n≥2时,Sn-1=2-2an-1 ,
两式作差得:3an=2an-1,即$\frac{{a}_{n}}{{a}_{n-1}}=\frac{2}{3}$,
∴{an}为公比是$\frac{2}{3}$的等比数列;
解:(2)由(1)知,${a}_{1}=\frac{2}{3},q=\frac{2}{3}$,
∴${a}_{n}=\frac{2}{3}•(\frac{2}{3})^{n-1}=(\frac{2}{3})^{n}$;
(3)anSn =${a}_{n}(2-2{a}_{n})=2{a}_{n}-2{{a}_{n}}^{2}$=$2[(\frac{2}{3})^{n}-(\frac{2}{3})^{2n}]$,
∴Tn=$2[\frac{2}{3}+(\frac{2}{3})^{2}+…+(\frac{2}{3})^{n}]$$-2[(\frac{2}{3})^{2}+(\frac{2}{3})^{4}+…+(\frac{2}{3})^{2n}]$,
=2$•\frac{\frac{2}{3}[1-(\frac{2}{3})^{n}]}{1-\frac{2}{3}}$$-2•\frac{\frac{4}{9}[1-(\frac{4}{9})^{n}]}{1-\frac{4}{9}}$=$4-4(\frac{2}{3})^{n}-\frac{8}{5}+\frac{8}{5}(\frac{2}{3})^{2n}$=$\frac{12}{5}-4(\frac{2}{3})^{n}+\frac{8}{5}(\frac{2}{3})^{2n}$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了数列的分组求和,考查了等比数列的前n项和的求法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a>b,则$\frac{1}{a}$>$\frac{1}{b}$ | B. | 若a>b,则$\frac{1}{a}$<$\frac{1}{b}$ | C. | 若|a|>b,则a2>b2 | D. | 若a>|b|,则a2>b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com